Interim Department Chair – Engineering and Professor, Computer Science
I co-direct Brock’s Bio-inspired Computational Intelligence Group.
I study computational intelligence algorithms, a branch of artificial intelligence to solve challenging large-scale optimization problems including applications from network science and transportation logistics. These algorithms include paradigms from swarm intelligence, evolutionary computation and artificial neural networks. Details of my research are found here.
- Ph.D., Intelligent Systems Engineering, University of the Ryukyus, Japan.
- ME., Information Engineering, Faculty of Engineering, University of the Ryukyus, Japan.
- Certificate, Japanese Language Studies, Osaka University of Foreign Studies, Japan.
- BSc., Double (Mathematics and Statistics) & Computer Science (minor), Jomo Kenyatta University of Agriculture and Technology, Kenya.
RECENT PUBLICATIONS
- Multi-guide Particle Swarm Optimization Archive Management Strategies for Dynamic Optimization Problems
Jocko Pawel, Beatrice M. Ombuki-Berman and Andries P Engelbrecht
Swarm Intelligence (Springer), Accepted, January, 2022. - An analysis of the impact of subsampling on the neural network error surface
Cody Dennis, Andries Engelbrecht and Beatrice M. Ombuki-Berman
Neurocomputing (Elsevier), 466:252-264, November 2021. - Visualizing and characterizing the parameter configuration landscape of Particle Swarm Optimization using physical landform classification
K. R. Harrison, B. M. Ombuki-Berman and A. P. Engelbrecht
2021 IEEE CEC Congress of Evolutionary Computation , CEC 2021, pp.2299-2306, Krakow, Poland, June 2021. - Decision Space Scalability Analysis of Multi-objective Particle Swarm Optimization Algorithms
A. Madani, B. M. Ombuki-Berman and A.P Engelbrecht
2021 IEEE CEC Congress of Evolutionary Computation , CEC 2021, pp.2179-2186, Krakow, Poland, June 2021. - Predicting particle swarm control parameters from fitness landscape characteristics
C. Dennis, B. M. Ombuki-Berman and A.P Engelbrecht
2021 IEEE CEC Congress of Evolutionary Computation , CEC 2021, pp.2289-2298, Krakow, Poland, June 2021. - T. Crane, A. P. Engelbrecht and B. M. Ombuki-Berman
12th International Conference on Swarm Intelligence (ICSI’21), Qingdao, China, to Appear in Springer-Nature Lecture Notes (LNCS) in Computer Scienc, Accepted MArch 2021. - Visualizing and characterizing the parameter configuration landscape of differential evolution using physical landform classification
K. R. Harrison, B. M. Ombuki-Berman and A. P. Engelbrecht
2020 IEEE Symposium Series on Computational Intelligence , IEEE, Canberra, Australia, pp.2437- 2444, Devember 2020. - NichePSO and the Merging Subswarm Problem
T. Crane, B. Ombuki-Berman and A. Engelbrecht
2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI) , Stockholm, Sweden,pp. 17-22, November 2020. - A Hybrid Approach to Network Robustness optimization using edge rewiring and edge Addition
J. Paterson and B. M. Ombuki-Berman 2020 IEEE International Conference on Systems, Man and Cybernetics , IEEE SMC 2020, Toronto, pp. 4051- 4057, October 2020. - Swarm Based Algorithms for Neural Network Training
R. McLean, B. M. Ombuki-Berman and A.P Engelbrecht
2020 IEEE International Conference on Systems, Man and Cybernetics IEEE SMC 2020, Toronto, pp. 2585- 2592, October 2020. - An Analysis of Activation Function Saturation in Particle Swarm Optimization Trained Neural Networks Training
C. Dennis, A.P Engelbrecht and B. M. Ombuki-Berman
Neural Processing Letters , 52:1123-1153, September 2020. - Juan C. Burguillo: Self-organizing coalitions for managing complexity
Ombuki-Berman B.
Genetic Programming and Evolvable Machines (2020). - https://doi.org/10.1007/s10710-019-09372-2. Invited Book Review.
Random Regrouping and Factorization in Cooperative Particle Swarm Optimization Based Large-Scale Neural Network Training
Cody Dennis, Beatrice M. Ombuki-Berman, and Andries P. Engelbrecht
Neural Processing Letters 51(1), 759-796, 2020 , DOI 10.1007/s11063-019-10112-x - A Parameter-Free Particle Swarm Optimization Algorithm using Performance Classifiers
K.R.Harrison,B.M.Ombuki-Berman,and A.P.Engelbrecht
Information Sciences vol. 503, pp.381- 400, 2019. - The Parameter Configuration Landscape: A Case Study on Particle Swarm Optimization
K. R. Harrison, B. M. Ombuki-Berman, and A. P. Engelbrecht
IEEE Congress on Evolutionary Computation (CEC 2019) , pp. 808-814, 2019. - An Analysis of Control Parameter Importance in the Particle Swarm Optimization Algorithm
K.R.Harrison, B.M.Ombuki-Berman, and A.P.Engelbrecht
In Advances in Swarm Intelligence, , Y. Tan, Y. Shi, and B. Niu, Eds., Springer International Publishing, pp. pp. 93-105, 2019. - Optimizing Scale-Free Network Robustness with the Great Deluge Algorithm
J. Paterson and B. M. Ombuki-Berman
The 31st International Conference on Industrial, Engineering & Other applications of Applied Intelligent Systems, IEA-AIE 2018 , Accepted, Montreal, June 2018. - Optimal Parameter Regions and the Time Dependence of Control Parameter Values
for the Particle Swarm Optimization Algorithm
K.R Harrison, A.P Engelbrecht and B. M. Ombuki-Berman
Swarm and Evolutionary Computation 41 , pp. 20-35, Elsevier, 2018. - Merging and Decomposition Variants of Cooperative Particle Swarm Optimization:
New Algorithms for Large Scale Optimization Problems
Jay Douglas, Andries Engelbrecht and Beatrice Ombuki-Berman
2018 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence ,
ISMSI2018, Accepted Phuket, Thailand, March 2018. - Gaussian-Valued Particle Swarm Optimization
K.R Harrison, B. M Ombuki-Berman and A.P Engelbrecht
in Swarm Intelligence , M. Dorigo, M. Birattari, C. Blum, A.L Christensen, A. Reina, and V. Trianni, Eds, Springer International Publishing, pp. 368- 377, 2018. - A Bi-Objective Critical Node Detection Problem
M. Ventresca, K. Harrison, and B.M. Ombuki-Berman
European Journal of Operational Research, 254(3):895-908, March 2018. - A Scalability Study of Many-Objective Optimization Algorithms
Justin Maltese, Beatrice M. Ombuki-Berman, and Andries P. Engelbrecht.
IEEE Transactions on Evolutionary Computation, pp: 79-96, February 2018. - Self-Adaptive Particle Swarm Optimization: A review and Analysis of Convergence
K.R Harrison, A.P Engelbrecht, and B. M Ombuki-Berman
Swarm Intelligence , 12(3) pp. 187–226, Springer, 2018. - An Age Layered Population Structure Genetic Algorithm for Multi-Depot Vehicle Routing
Audrey Opoku-Amankwaar and B.M Ombuki
2017 IEEE Symposium Series on Computation Intelligence , pp.3403-3410, Hawai, November 2017. - Optimal Parameter Regions for Particle Swarm Optimization Algorithms
Kyle R. Harrison Beatrice M. Ombuki-Berman, and Andries P. Engelbrecht.
IEEE Congress on Evolutionary Computation, CEC 2017 pp. 349-356, Spain, June 2017. - Inertia weight control strategies for particle swarm optimization
Kyle R. Harrison, Andries P. Engelbrecht and Beatrice M. Ombuki-Berman.
Swarm Intelligence , Volume 10, Issue 4, pp:267-305, December 2016. - A Meta-Analysis of Centrality Measures for Comparing and Generating Complex Network Models.
Kyle Robert Harrison, Mario Ventresca, and Beatrice M. Ombuki-Berman.
Journal of Computational Science, Elsevier, 17(1):205-215, November 2016. - Automatic Inference of Graph Models for Directed Complex Networks using Genetic Programming
Michael Medland, Kyle Robert Harrison, and Beatrice M. Ombuki-Berman.
IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. 2337-2344, Vancouver, July 2016. - Pareto-Based Many-Objective Optimization using Knee Points
Justin Maltese, Beatrice M. Ombuki-Berman, and Andries P. Engelbrecht.
IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. pp. 3678 – 3686, Vancouver, July 2016. - The Sad State of Self-Adaptive Particle Swarm Optimizers
Kyle R. Harrison, Andries P. Engelbrecht and Beatrice M. Ombuki-Berman.
IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. 431-439, Vancouver, July 2016. - A Radius-Free Quantum Particle Swarm Optimization Technique for Dynamic Optimization Problems
K.R. Harrison, B.M Ommbuki-Berman, and Andries P. Engelbrecht.
IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. 578-585, Vancouver, July 2016.