Physics |
|
Chair
Kirill Samokhin
Professors Emeriti
John E. Black, Stuart M. Rothstein, Ramesh C. Shukla
Professors
Shyamal K. Bose, David A. Crandles, Bozidar Mitrovic, Fereidoon S. Razavi, Maureen Reedyk, Kirill Samokhin
Associate Professors
Thad A. Harroun, Edward Sternin
Assistant Professor
Santo D'Agostino
Participating Faculty
Stephen Anco, Doug Bruce, Art van der Est, Thomas Wolf
Adjunct Professors
Ady Abdellatif, Richard Akis, Josef Dubicki, John Katsaras, Reinhard Kremer, Ole Steuernagel, Ranjini Tolakanahalli
Academic Advisors
David Crandles, Maureen Reedyk
Engineering Science Advisor/Coordinator
Thad A. Harroun
Senior Laboratory Co-ordinator/Demonstrator
Ivana Komljenovic Metcalf
Laboratory Demonstrator
Fulvio (Phil) Boseglav
Director, Co-op, Career and Experiential Education
Cara Krezek
|
|
General Information |
|
Administrative Assistant
Elizabeth Horvath
905-688-5550, extension 3412
Mackenzie Chown B210
physics@brocku.ca
The department offers four-year programs of study leading to a Bachelor of Science (BSc) Honours in Physics, a BSc Honours Co-op option in Physics, a BSc with Major Physics and a three-year BSc Pass degree program. Students may take a single major in Physics or a combined major with Biological Sciences, Chemistry, Computer Science or Mathematics.
The core of the program is designed to provide an understanding of the principles and fundamental interactions of classical and quantum physics as well as many applications of these principles in technology and everyday life. It is possible for non-Physics degree students to take advanced courses, provided they have the physics and mathematics required in the year 1 Physics program. An experimental physics path of PHYS 2P30 and 3P92 or a modern physics path of PHYS 2P50 and 3P91 are possible.
The Physics Co-op program combines academic and work terms over a four and one-half year period. Students spend two years in an academic setting, where they acquire the necessary background prior to taking the first work placement. In addition to the current fees for courses in academic study terms, Physics Co-op students are assessed an annual administrative fee (see the Schedule of Fees).
Eligibility to continue is based on the student's major average and non-major average. A student with a minimum 70 percent major average and a minimum 60 percent non-major average will be permitted to continue. A student with a major average lower than 70 percent will not be permitted to continue in the Physics Co-op program, but may continue in the Physics stream.
All students in the Co-operative Education program are required to read, sign and adhere to the terms of the Student Regulations Waiver and Co-op Student Manuals (brocku.ca/co-op/current-students/co-op-student-manuals) as articulated by the Co-op Programs Office. In addition, eligibility to continue in the co-op option is based on the student's major average and non-major average, and the ability to demonstrate the motivation and potential to pursue a professional career.
Each four-month co-operative education work term must be registered. Once students are registered in a co-op work term, they are expected to fulfill their commitment. If the placement accepted is for more than one four-month work term, students are committed to complete all terms. Students may not withdraw from or terminate a work term without permission from the Director, Co-op Program Office.
The Physics Co-op program designation will be awarded to those students who have honours standing and who have successfully completed a minimum of twelve months of Co-op work experience.
The department also offers a Minor in Physics program. The goal of this program is to introduce students to the fundamental concepts of various branches of physics and their applications. The selection of courses is tailored to the needs and interests of individual students with diverse backgrounds (philosophy, classics, business and finance, mathematics and other science programs). Students should consult one of the Undergraduate Student Advisers of the Physics Department (physics@brocku.ca or ext. 3412) to plan the sequence of courses most suited to their background and needs.
|
|
Program Notes |
|
1. |
Students should consult a faculty adviser when planning years 3 and 4 of the BSc programs or year 3 of the BSc Pass program. |
|
2. |
CHEM 1P91, 1P92, MATH 1P05 and 1P11 expect a certain level of achievement on relevant high-school courses and conduct placement tests early in the term. Students who do not meet the preparation requirements are able to enroll in alternate courses: CHEM 1P00, MATH 1P20, 1P12 and 2P12, respectively, before continuing in the courses required for their program. As a result, the students may take more than four years and 20.0 credits to graduate. Students should contact an Academic Adviser for their program. |
|
3. |
Students must check to ensure that any additional specific prerequisites for each course are met. Students may be deregistered, at the request of the instructor, from any course for which prerequisites and/or restrictions have not been met. Courses delivered in the Faculty of Mathematics and Science include APCO 1P00, 1P93, 2P11, BIOL 2Q04, 4P25, BTEC 2P09, CHEM 2P12, 2P42, 2P63, ENGS 1P01, 3P12, 3P21, 3P22, ERSC 2P07, 2P61, 3P95, FMSC 1P00, MATH 1P05, 1P06, 1P20, 1P70, 1P98, 1F92, PHYS 1P21, 1P22, 2P02, and 2P30. The Minor in Engineering Science is a limited enrolment program. |
|
4. |
In 20 credit degree programs a maximum of eight credits may be numbered 1(alpha)00 to 1(alpha)99; at least three credits must be numbered 2(alpha)90 or above; at least three credits must be numbered 3(alpha)90 or above; and the remaining credits must be numbered 2(alpha)00 or above. In 15 credit degree program a maximum of eight credits may be numbered 1(alpha)00 to 1(alpha)99; at least three credits must be numbered 2(alpha)90 or above; and the remaining credits must be numbered 2(alpha)00 or above. In some circumstances, in order to meet university degree and program requirements, more than 15 or 20 credits may be taken. |
|
|
Honours Program |
|
Year 1
Year 2
Year 3
Year 4
|
|
Physics Co-op (Honours only) |
|
Students admitted to the Co-op program must follow the program schedule as listed below. Failure to adhere to the schedule may result in removal from the Physics Co-op program.
Year 1
Year 2
Spring/Summer Sessions:
Year 3
Fall Term:
Winter Term:
Year 4
Fall Term:
Winter Term:
Spring/Summer Sessions:
Year 5
Fall Term:
|
One PHYS credit numbered 3(alpha)90 or above |
|
PHYS 4P51 |
|
one elective credit |
|
|
BSc with Major Program |
|
Year 1
Year 2
Year 3
Year 4
|
Two and one-half PHYS credits numbered 3(alpha)90 or above |
|
two and one-half elective credits (see program note 4) |
|
|
Pass Program |
|
Satisfactory completion of the first three years of the Honours program entitles a student to apply for a Pass degree.
|
|
Concurrent BSc/BEd |
|
The Department of Physics and the Faculty of Education co-operate in offering two Concurrent BSc (Honours)/BEd programs. The Physics BSc (Honours)/BEd programs combines the BA Honours program or BA Integrated Studies Honours program with the teacher education program for students interested in teaching at the Intermediate/Senior level (grades 7-12) and at the Junior/Intermediate level (grades 4-10). Refer to the Education-Concurrent BSc (Honours)/BEd (Intermediate/Senior) or Education-Concurrent BSc Integrated Studies (Honours)/BEd (Junior/Intermediate) program listings for further information.
|
|
Combined Major Program |
|
Physics and Biological Sciences |
|
Honours
Year 1
Year 2
Year 3
Year 4
Pass Program
Satisfactory completion of the first three years of the Honours program entitles a student to apply for a Pass degree.
|
|
Physics and Computer Science (Honours only) |
|
Year 1
Year 2
Year 3
Year 4
|
Two PHYS credits numbered 3(alpha)90 or above |
|
two COSC credits numbered 3(alpha)90 or above |
|
COSC 4F00 |
|
|
Physics and Mathematics (Honours only) |
|
Year 1
Year 2
Year 3
Year 4
|
PHYS 4F90 and one PHYS credit numbered 3(alpha)90 or above, or MATH 3P12 and one and one-half MATH credits numbered 3(alpha)90 or above |
|
PHYS 4P51 |
|
one PHYS credit numbered 3(alpha)90 or above |
|
one and one-half elective credit |
|
|
Physics and Chemistry |
|
Consult the Chemistry entry for a listing of program requirements.
|
|
Minor in Engineering Science |
|
The Minor in Engineering Science is open to all registered undergraduate Brock students who have completed at least five credits in post-secondary education with an 80 percent average or higher.Students who transfer to Brock from another institution with at least five equivalent credits accepted by a departmental review will also be considered.
Students wishing to minor in Engineering Science are required to complete a change of major request(see Office of the Registrar) and the online application which includes a short autobiographical sketch and statement of interest (see Department for details). Students must apply to join the Minor before April 1 of the year they wish to enroll.
The Minor in Engineering Science is a limited enrolment program. Entry into the minor is not guaranteed by attainment of the minimum requirements. ENGS courses will be restricted to students accepted into the Minor.
Students wishing to obtain the minor must complete FMSC 1P00 if they do not otherwise have any previous MATH credit.
To complete a Minor in Engineering Science students must complete four full credits. Among the credits chosen, at least two credits must be from ENGS courses and at least two credits of the total must be from courses offered from the Faculty of Mathematics and Science (see program note 3).
Students must satisfy the following requirements with a minimum 80 percent average:
|
ENGS 1P01 |
|
At least one and one-half credits from ENGS 2P02, 3P12, 3P21, 3P22, 3P41, 3P42. |
|
At least one and one-half credits from APCO 1P00, 1P93, 2P11, BIOL 2Q04, 4P25, BTEC 2P09,CHEM 2P12, 2P42, 2P63, ENGS 3P12, 3P21, 3P22, ERSC 2P07, 2P61, 3P95, FMSC 1P00, MATH 1P05, 1P06, 1P20, 1P70, 1P98, 1F92, PHYS 1P21, 1P22, 2P02, 2P30. |
|
Remaining credits can be from ENSU 2P01, 2P02, ENTR 2P51, IASC 2P03, KINE 4P01. |
For more information visit http://www.physics.brocku.ca/.
|
|
Minor in Physics |
|
Students in other disciplines can obtain a Minor in Physics within their degree programs by completing four full credits from the following courses with a minimum 60 percent average:
|
|
Graduate Programs in Physics |
|
The department offers both MSc and PhD programs in Physics. Current research interests and activities involve experimental, theoretical and computational studies in condensed matter physics, materials science, and biophysics.
For details, see the Graduate Calendar or contact the Chair of the Department.
|
|
Course Descriptions |
|
Note that not all courses are offered in every session. Refer to the applicable term timetable for details.
# Indicates a cross listed course
* Indicates primary offering of a cross listed course
|
|
Prerequisites and Restrictions |
|
Students must check to ensure that prerequisites are met. Students may be deregistered, at the request of the instructor, from any course for which prerequisites and/or restrictions have not been met.
ASTRONOMY COURSES
ASTR 1P01
Introduction to Astronomy I
Description of the appearance of the night sky, history of astronomy, light and telescopes, measuring the properties of stars, structure and functioning of the Sun.
Lectures, 3 hours per week.
ASTR 1P02
Introduction to Astronomy II
Formation and evolution of stars, properties of some unusual astronomical objects, such as pulsars and black holes, galaxies, cosmology and a discussion of the planets of the solar system.
Lectures, 3 hours per week.
Note: ASTR 1P01 is highly recommended.
ENGINEERING COURSES
ENGS 1P01
The Humanist Engineer
Engineering design and construction problems, solutions, and new challenges.
seminar, laboratories, 5 hours per week.
Restriction: open to students in the Minor of Engineering Science
ENGS 2P02
Invitational Education Theory for Engineers
Exploration of teaching, learning, and practice of engineering from the perspectives of Self, Others, Knowledge, Organizations and Societal Good.
On-line delivery.
Restriction: open to students in the Minor of Engineering Science.
ENGS 3P12
Feeding the World: Restorative Engineering
Engineering techniques to protect and remediate the environment. Topics include site remediation (brownfields, agricultural land, greenhouse, fish treatment plant, etc.), ecosystem restoration, and waste management. Analysis of biocommodity production from the treatment of different waste streams through the concept of circular economy.
Seminar, laboratories, 5 hours per week.
Restriction: open to students in the Minor of Engineering Science.
ENGS 3P21
Shaping the Future: New Automation
Human and non-human interactions, based on the notion of metaphorical software robots and artificial intelligence for processing transactions, managing data, triggering responses and communicating with digital systems.
Seminar, laboratories, 5 hours per week.
Restriction: open to students in the Minor of Engineering Science.
ENGS 3P22
Shaping the Future: Energy Frontiers
Exploration of frontiers of energy generation and consumption, their intersections with industry, environment and society. Examination of energy demand and its determinants, energy usage effectiveness and efficiency, policy dimension of energy and climate change, and potential impacts on ecosystems.
Seminar, laboratories, 5 hours per week
Restriction: open to students in the Minor of Engineering Science.
ENGS 3P41
Creating Healthy Communities: Human Mechanics
Invention of assistive devices for human augmentation (bionic technology, robotics and exoskeletons) to prolong and enhance lives. Assistive solutions for recovery from injury, improvement of sport mechanics, assistance for the elderly, and optimization of human performance for occupational workers.
Seminar, laboratories, 5 hours per week.
Restriction: open to students in the Minor of Engineering Science.
ENGS 3P42
Creating Healthy Communities: Inclusive Cities
Smart cities and navigation of the urban environment. Adaptation to climate change, sustainable methods of transportation, reducing, reusing, and recycling waste, and making urban centers more compassionate. Consideration of local needs of St. Catharines and neighboring cities.
Seminar, laboratories, 5 hours per week.
Restriction: open to students in the Minor of Engineering Science.
PHYSICS COURSES
PHYS 1P21
Introductory Physics I
Kinematics, Newton's laws and their applications to equilibrium and dynamics; conservation laws; oscillations, waves and sound.
Lectures, 4 hours per week.
Note: students may not concurrently register in PHYS 1P91.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 1P91.
PHYS 1P22
Introductory Physics II
Statics and dynamics of fluids; heat and thermodynamics; geometrical and wave optics; electric and magnetic forces; DC circuits; atomic and nuclear physics.
Lectures, 4 hours per week.
Prerequisite(s): PHYS 1P21 or permission of the instructor.
Note: students may not concurrently register in PHYS 1P92.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 1P23, 1P92 and 1P93.
PHYS 1P91
Introductory Physics I with Laboratory
Combination of lectures in PHYS 1P21 with a laboratory session.
Lectures, 4 hours per week; lab, alternating weeks, 3 hours per week.
Note: students may not concurrently register in PHYS 1P21. Materials fee required.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 1P21.
PHYS 1P92
Introductory Physics II with Laboratory
Combination of lectures in PHYS 1P22 with a laboratory session.
Lectures, 4 hours per week; lab, alternating weeks, 3 hours per week.
Prerequisite(s): PHYS 1P91 or permission of the instructor.
Note: students may not concurrently register in PHYS 1P22.Materials fee required.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 1P22, 1P23 and 1P93.
PHYS 1P94
Introductory Physics III
Calculus-based course covering rotational and center-of-mass motion; work done by a variable force; electric and magnetic fields; electric potential and potential energy; magnetic induction; AC circuits and resonance; wave-particle duality; elements of modern physics. Use of computers for data acquisition, visualization and analysis; elements of computer programming; principles of scientific writing and communications.
Lectures, 3 hours per week; lab 3 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91; one of MATH 1P01, 1P05, 1P97 or permission of the instructor.
Note: materials fee required.
PHYS 2P02
Introduction to Medical Physics
Physical and chemical interactions of ionizing radiations and their biological effects, structural imaging (magnetic resonance imaging, ultrasound, computed tomography and optical microscopy); nuclear medicine, therapeutic applications of radiation.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): one of 4U/M PHYS (SPH4U), PHYS 1P22, 1P92.
PHYS 2P20
Introductory Mechanics
Mechanics of particles and systems of particles by the Newtonian method; conservation of linear momentum, angular momentum and energy; elementary dynamics of rigid bodies; oscillators; motion under central forces; selected applications.
Lectures, problem sessions, 3 hours per week; lab, tutorial, 3 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91 (recommended); PHYS 1P22 or 1P92 (recommended); MATH 1P01 and 1P02, or MATH 1P05 and 1P06 (recommended).
Note: materials fee required.
PHYS 2P30
Introduction to Electronics
Conduction in metals and semi-conductors; circuit analysis; time-dependent currents, transients, AC circuits, filters, resonance; semi-conductor junction, diode and transistor; rectification, switching and amplification; operational amplifiers; combinatorial logic and circuits; sequential circuits, counters; analog-to-digital conversion; laboratory instruments.
Lectures, lab, 6 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91 (recommended); PHYS 1P22 or 1P92 (recommended); one MATH credit or permission of the instructor.
Note: no previous course in electricity/magnetism/electronics is required. Secondary school algebra and some basic calculus will be used in the quantitative sections. Materials fee required.
Completion of this course will replace previously obtained grade and credit in PHYS 2P31.
PHYS 2P50
Modern Physics
Special relativity, photons, the wave-particle aspects of electromagnetic radiation and matter; introduction to wave mechanics; the hydrogen atom and atomic line spectra; orbital and spin angular momenta; lasers.
Lectures, tutorial, 4 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91 (recommended); PHYS 1P22 or 1P92 (recommended); MATH 1P01 and 1P02, or MATH 1P05 and 1P06 (recommended).
PHYS 2P51
Introduction to Classical and Modern Optics
Geometrical and wave optics, reflection, refraction, lenses, matrix methods, aberrations, gradient index phenomena including fibre optics, interference, coherence, holography, Fraunhofer and Fresnel diffraction, polarization.
Lectures, lab, 6 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91 (recommended); PHYS 1P22 or 1P92 (recommended); MATH 1P01 and 1P02, or MATH 1P05 and 1P06 (recommended).
Note: materials fee required.
PHYS 3P02
Cellular Biophysics
Introduction to the molecular biophysics of cellular membranes, structure and function of the major cell components (lipids, proteins and carbohydrates), experimental physical techniques, photobiology, biological electrokinetics, bioinformatics, biomechanics, and biomimetics.
Lectures, 3 hours per week; lab, alternate week, 4 hours per week.
Prerequisite(s): PHYS 1P21 or 1P91 (recommended); PHYS 1P22 or 1P92 (recommended) or permission of the instructor.
PHYS 3P35
Electromagnetism I
Electric field, divergence and curl of electrostatic field; relation between electric work and energy; conductors; application of Laplace's and Poisson's equation in electrostatics; electrostatic field in matter; field in polarized object and linear dielectric.
Lectures, 3 hours per week.
Prerequisite(s): MATH 2P03, 2P08 and 3P06.
PHYS 3P36
Electromagnetism II
Magnetostatics, divergence and curl of magnetic field; magnetic vector potential; magnetic field in matter; magnetization; field of magnetic object; magnetic field inside of linear and non-linear media; electrodynamics; Ohm's law; Faraday's law and Maxwell equations; energy and momentum in electrodynamics; electromagnetic waves.
Lectures, 3 hours per week.
Prerequisite(s): PHYS 3P35.
PHYS 3P41
Statistical Physics I
Introduction to probability distribution functions, accessible states, entropy, temperature, partition functions and relations to thermodynamic functions.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): PHYS 2P50.
PHYS 3P70
Introduction to Quantum Mechanics
Wave particle dualism, Schrodinger equation, solution of simple one-dimensional barrier problems and the harmonic oscillator, hydrogen atom, angular momentum theory, introduction to perturbation theory and variational methods.
Lectures, lab/problem sessions, 4 hours per week.
Prerequisite(s): PHYS 2P50, MATH 2P03, 2P08 and 3P06.
PHYS 3P90
Classical Mechanics
Advanced treatment of the mechanics of particles and of rigid bodies; Lagrangian and Hamiltonian methods; Poisson brackets, applications to the theory of small oscillators and central force motions, elements of chaotic motions.
Lectures, 3 hours per week.
Prerequisite(s): PHYS 2P20, MATH 2P03, 2P08 and 3P06.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 3P20.
PHYS 3P91
Experimental Physics I
Laboratory experiments to be selected from atomic physics, nuclear physics, solid state physics.
Lab, 1 day per week.
Prerequisite(s): PHYS 2P50 or permission of the instructor.
Note: materials fee required.
PHYS 3P92
Experimental Physics (Electronics) II
Operational amplifiers, converters, switches, microcomputers and their application to physical measurements.
Lab, 1 day per week.
Prerequisite(s): PHYS 2P30 (2P31) or permission of the instructor.
Note: materials fee required.
PHYS 3P93
Solid-State Devices
Principles of operation of solid-state devices, from the point of view of the quantum theory; electronic bands and conduction in semiconductors; operation and manufacture of silicon and germanium diodes, junction and field effect transistors; thin-film deposition technology; special topics.
Lectures, lab, 6 hours per week.
Prerequisite(s): PHYS 3P70.
PHYS 3P94
Mathematical Methods in Physics
Techniques of mathematical physics in the context of physically relevant problems. Vector calculus in curvilinear coordinate systems, applied linear algebra, Fourier series and Fourier transforms, special functions of mathematical physics, and least-squares approximations.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): MATH 2P03, 2P08 and 3P06 or permission of the instructor.
Completion of this course will replace previous assigned grade and credit obtained in PHYS 3V94.
*PHYS 3P95
Introduction to Mathematical Physics
(also offered as MATH 3P95)
Topics may include Calculus of variations, Lagrangian and Hamiltonian mechanics, field theory, differential forms, vector and polyvector fields, tensor fields, Lie derivative, connection, Riemann metric, Lie groups and algebras, manifolds, and mathematical ideas of quantum mechanics. Applications to theoretical physics.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite(s): MATH 2P03 and 2P08.
Note: MATH 2P12 is recommended.
Completion of this course will replace previous assigned grade and credit obtained in PHYS (MATH) 4P64.
PHYS 3V94-3V99
Special Topics
Topics may include techniques of mathematical physics and scientific computing.
Prerequisite(s): MATH 2P03, 2P08 and 3P06 or permission of the instructor.
PHYS 4F90
Research Project I
Small experimental, theoretical or applied physics research project to be carried out under the supervision of a member of the department.
Restriction: open to PHYS (single or combined) and CAST majors with either a minimum of 14.0 overall credits, a minimum 70 percent major average and a minimum 60 percent non-major average or approval to year 4 (honours).
Note: the project may, under special circumstances, be started in the summer months. Students must consult with the Department Chair regarding their proposed program during the first week of lectures.
PHYS 4F91
Research Project II
Detailed experimental, theoretical or applied physics research project to be carried out under the supervision of a member of the department.
Restriction: open to PHYS (single or combined) majors with either a minimum of 14.0 overall credits, a minimum 70 percent major average and a minimum 60 percent non-major average or approval to year 4 (honours) and permission of the Department.
Prerequisite(s): PHYS 4F90.
Note: the project may, under special circumstances, be started in the summer months. Students must consult with the Department Chair regarding their proposed program during the first week of lectures. PHYS 4F90 and 4F91 may be taken concurrently.
#PHYS 4P09
Solitons and Nonlinear Wave Equations
(also offered as MATH 4P09)
Linear and nonlinear travelling waves. Nonlinear evolution equations (Korteweg de Vries, nonlinear Schrodinger, sine-Gordon). Soliton solutions and their interaction properties. Lax pairs, inverse scattering, zero-curvature equations and Backlund transformations, Hamiltonian structures, and conservation laws.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite(s): one of MATH 3P08, 3P09, 3P51, 3P52.
PHYS 4P10
Introduction to Scientific Computing
Computational methods and techniques commonly used in condensed matter physics research; graphing and visualization of data; elements of programming and programming style; use of subroutine libraries; common numerical tasks; symbolic computing systems. Discipline-specific scientific writing.
Lectures, tutorial, 3 hours per week.
Restriction: permission of the instructor.
Note: case studies from various areas of computational physics. Preparation of documents and presentations.
PHYS 4P41
Statistical Physics II
Fundamental postulates, equilibrium statistical mechanics and its relation to thermodynamics. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics are derived and applied in appropriate physical situations of non-interacting and interacting particles; fluctuations; elementary treatment of transport theory.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): PHYS 3P41 and 3P70.
PHYS 4P51
Quantum Mechanics
Postulates about states, observables, probabilities, change of state in a measurement, and time evolution. Dirac's bra and ket notation; representation and transformation theory. Two-level systems. Complete set of commuting observables and classification of states. Symmetries and their usage in classification of states.
Lectures, 3 hours per week.
Prerequisite(s): PHYS 3P70, MATH 3P04, 3P08 and 3P09.
PHYS 4P61
Nuclear Physics
Intrinsic properties of nuclei, nuclear binding energy; qualitative treatment of shell model; alpha, beta and gamma radioactivities, nuclear fission, characteristics of nuclear reactions.
Lectures, problem sessions, 3 hours per week.
Prerequisite(s): PHYS 2P50 and 3P70.
PHYS 4P62
Modern Wave Optics: Optical Tweezers to Atom Clouds
Optical lattices, spatial light modulators, evanescent waves and their applications from biology to ultracold atoms. Laser cooling and optical trapping. Manipulation of crystal properties by light. Optical patterns: tweezers, mirrors, funnels, bottles. Maple-based coursework.
Lectures, tutorial, 4 hours per week.
Prerequisite(s): PHYS 2P51 and MATH 2P03 or permission of the instructor.
PHYS 4P70
Condensed Matter Physics I
Crystal structures and crystal binding; the vibration of atoms in solids and the thermodynamics of solids; introduction to transport properties of solids.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): PHYS 3P41 and 3P70.
PHYS 4P71
Condensed Matter Physics II
Energy bands in metals and semiconductors, dynamics of electrons, Fermi surfaces and transport properties of solids, magnetism, screening in electron gas, optical properties.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite(s): PHYS 4P70.
PHYS 4P92
Advanced Electronics Laboratory
Families of logic devices, selection and implementation techniques; synchronous and asynchronous sequential circuits; safety and physical constraints; programmable array logic designs; digital signal processing, optoelectronics; CAD; circuit layout.
Lab, 1 day per week.
Prerequisite(s): PHYS 3P92.
Note: completion of a project from design to a working device is required.
#PHYS 4P94
Relativity Theory and Black Holes
(also offered as MATH 4P94)
Review of Special Relativity and Minkowski space-time. Introduction to General Relativity theory; the space-time metric, geodesics, light cones, horizons, asymptotic flatness; energy-momentum of particles and light rays. Curvature and field equations. Static black holes (Schwarzschild metric), properties of light rays and particle orbits. Rotating black holes (Kerr metric).
Lectures, 3 hours; lab/tutorial, 1 hour per week.
Prerequisite(s): PHYS 2P20, 2P50, MATH 2P03, 2P08 and 3P06 or permission of the instructor.
PHYS 4V80-4V89
Special Topics
Examples of topics are relativity and cosmology; surface physics and electronic states in ordered and disordered systems.
Lectures, problem sessions, 4 hours per week.
CO-OP COURSES
PHYS 0N01
Co-op Work Placement I
First co-op placement (4 months) with an approved employer.
Restriction: open to PHYS Co-op students.
PHYS 0N02
Co-op Work Placement II
Second co-op placement (4 months) with an approved employer.
Restriction: open to PHYS Co-op students.
PHYS 0N03
Co-op Work Placement III
Third co-op placement (4 months) with an approved employer.
Restriction: open to PHYS Co-op students.
PHYS 0N04
Co-op Work Placement IV
Co-op placement (4 months) with an approved employer.
Restriction: open to PHYS Co-op students.
PHYS 0N05
Co-op Work Placement V
Co-op placement (4 months) with an approved employer.
Restriction: open to PHYS Co-op students.
PHYS 2C01
Co-op Reflective Learning and Integration I
Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.
Restriction: open to PHYS Co-op students.
Prerequisite(s): SCIE 0N90.
Corequisite(s): PHYS 0N01.
Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.
PHYS 2C02
Co-op Reflective Learning and Integration II
Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.
Restriction: open to PHYS Co-op students.
Prerequisite(s): SCIE 0N90.
Corequisite(s): PHYS 0N02.
Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.
PHYS 2C03
Co-op Reflective Learning and Integration III
Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.
Restriction: open to PHYS C-op students.
Prerequisite(s): SCIE 0N90.
Corequisite(s): PHYS 0N03.
Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.
PHYS 2C04
Co-op Reflective Learning and Integration IV
Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.
Restriction: open to PHYS Co-op students.
Prerequisite(s): SCIE 0N90.
Corequisite(s): PHYS 0N04.
Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.
PHYS 2C05
Co-op Reflective Learning and Integration V
Provide student with the opportunity to apply what they've learned in their academic studies through career-oriented work experiences at employer sites.
Restriction: open to PHYS Co-op students.
Prerequisite(s): SCIE 0N90.
Corequisite(s): PHYS 0N05.
Note: students will be required to prepare learning objectives, participate in a site visit, write a work term report and receive a successful work term performance evaluation.
|
|
|