Mathematics Courses

MATH 1F92
Introductory Statistics
Types of scales; frequency distribution, mean, mode, median and measures of dispersion; elements of probability theory, probability distributions, nonparametric tests; normal, chisquared, tand Fdistributions; means and variance tests; analysis of variance, correlation and regression, applications and use of a computer package.
Lectures, lab, 4 hours per week.
Prerequisite: grade 11 mathematics credit.
Note: designed for nonscience majors. Not open to students with credit in any university mathematics or statistics course.

MATH 1P01
Calculus I
Applications of differential calculus, linearization and optimization; antiderivatives, definite integrals, the fundamental theorem of calculus, numerical integration; logarithms, exponentials, and inverse trigonometric functions, ordinary differential equations and their applications, improper integrals, the use of computer algebra systems.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisites: two OAC mathematics credits including OAC calculus or permission of instructor.
Completion of this course will replace previous assigned grade in MATH 1F00 and 1P93.

MATH 1P02
Calculus II
Applications of the definite integral: areas, volumes, and work; infinite series, Taylor's theorem, Taylor series; functions of several variables: and partial differentiation, limits and continuity, gradients, extrema with and without constraints, double integrals; the use of computer algebra systems to solve systems of equations, plot surfaces, compute partial derivatives and evaluate multiple integrals.
Lectures, 3 hours per week; lab/tutorial, l hour per week.
Prerequisite: MATH 1P01(1P93).
Completion of this course will replace previous assigned grade in MATH 1F00, MATH 1P94

MATH 1P12
Linear Algebra I
Introduction to finite dimensional real vector spaces; systems of linear equations: Gaussian elimination, matrix operations and inverses, determinants. Vectors in R2 and R3: dot product and norm, cross product, the geometry of lines and planes in R3; Euclidean n-space, linear transformations for Rn to Rm, eigenvalues and eigenvectors; selected applications and use of a computer algebra system.
Lectures, 3 hours per week; lab, l hour per week.
Prerequisites: two OAC mathematics credits or permission of instructor.

MATH 1P40
Mathematics Integrated with Computers and Applications I
Exploration of ideas and problems in algebra differential equations and dynamical systems using computers. Topics include number theory, integers mod p, roots of equations, fractals, predator-prey models and the discrete logistic equation for popular growth.
Lectures, 2 hours per week; lab, 3 hours per week.
Prerequisites: MATH 1P01 (1P93), 1P12 and COSC 1P02.

MATH 1P66
Mathematics for Computer Science I
Development, analysis and applications of algorithms in computation; elementary logic, proofs; graphs and trees.
Lectures, tutorial, 4 hours per week.
Prerequisite: one OAC mathematics credit.
Note: designed for students in Computer Science.

MATH 1P67
Mathematics for Computer Science II
Development, analysis and applications of algorithms in combinatorial analysis; discrete probability models; recursion; limiting procedures and summation; difference equations; introduction to automata theory.
Lectures, tutorial, 4 hours per week.
Prerequisite: MATH 1P66.
Note: designed for students in Computer Science.

MATH 1P97
Differential and Integral Methods
Elementary functions, particularly the power function, the logarithm and the exponential; the derivative and its application; integration; approximation to the area under a curve; the definite integral; partial differentiation; simple differential equations; numerical methods; and the use of computer algebra systems.
Lectures, lab, 5 hours per week.
Prerequisite: grade 12 mathematics or permission of the department.
Note: designed for students of Biological Sciences, Biotechnology, Business, Earth Sciences, Economics, Geography and Health Sciences. Not open to students with credit in any university calculus course.
Completion of this course will replace previous assigned grade in MATH 1P01 and 1P93.

MATH 1P98
Basic Statistical Methods
Descriptive statistics; probability distributions, estimation; hypothesis testing; nonparametric tests; normal, chisquared, t and Fdistributions; mean and variance tests; regression and correlation; and the use of statistical computer software.
Lectures, lab, 4 hours per week.
Prerequisite: grade 12 mathematics.
Note: designed for students of Biological Sciences, Biotechnology, Business, Earth Sciences, Economics, Geography and Health Sciences. Not open to students with credit in any university statistics course.

MATH 2F00
Advanced Calculus
Continuous functions on Rn, proof of the intermediate value theorem and the extreme value theorem; Heine's theorem; partial differentiability; Taylor's theorem; the implicit function theorem; integration theory; multiple integrals, arc length, surface area, line and surface integrals, Green's theorem, Gauss'theorem, Stokes' theorem; curves and surfaces in Rn.
Lectures, 4 hours per week.
Prerequisites: MATH 1P93 and 1P94 (1F00).

MATH 2F05
Applied Advanced Calculus
First and second order differential equations, vector functions, curves, surfaces; tangent lines and tangent planes, linear approximations, local extrema; cylindrical and spherical coordinates; gradient, divergence, curl; double and triple integrals, line and surface integrals; Green's theorem, Stokes' theorem, Gauss' theorem; elementary complex analysis. Emphasis on applications to physical sciences.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 1P02 (1F00 or 1P94).
Completion of this course will replace previous assigned grade in MATH 2F00, 2F95 and 2P03.

MATH 2F40
Mathematics Integrated with Computers and Applications II
Theory and application of mathematical models; discrete dynamical systems; time series and their application to the prediction of weather and sunspots; Markov chains; empirical models using interpolation and regression; continuous stochastic models; simulation of normal, exponential and chi-square random variables; queuing models and simulations.
Lectures, 2 hours per week; lab, 3 hours per week.
Prerequisite: MATH 1P02 (1F00 or 1P94) or 1P40.

MATH 2P03
Calculus III
Multivariable integration, polar, cylindrical and spherical coordinates, vector algebra, parameterized curves and surfaces, vector calculus, arc length, curvature and torsion, projectile and planetary motion, line integrals, vector fields, Green's theorem, Stokes' theorem, the use of computer algebra systems to manipulate vectors, plot surfaces and curves, determine line integrals and analyze vector fields.
Lectures, 3 hours per week, lab/tutorial, 1 hour per week.
Prerequisite: MATH 1P02 (1F00 or 1P94).
Completion of this course will replace previous assigned grade in MATH 2F00.

MATH 2P04
Basic Concepts of Analysis
Sets; mappings, count ability; properties of the real number system; inner product, norm, and the Cauchy-Schwarz inequality; compactness and basic compactness theorems (Cantor's theorem, the Bolzano-Weierstrass theorem, the Heine-Borel theorem); connectedness; convergence of sequences; Cauchy sequences; continuous and uniformly continuous functions.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2P03.
Completion of this course will replace previous assigned grade in MATH 2F00.

MATH 2P08
Ordinary Differential Equations
Linear and nonlinear differential equations and autonomous systems; analytical and numerical solution methods, basic existence and uniqueness theory, qualitative analysis of solutions including periodic cycles and steady-states, attractors, chaos, asymptotic behavior; modeling and applications of differential equations.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisites: MATH 1P02 (1F00 or 1P94) and 1P12.
Completion of this course will replace previous assigned grade in MATH 2F00 and 2F95.

MATH 2P12
Linear Algebra II
Finite dimensional real vector spaces and inner product spaces; matrix and linear transformation; eigenvalues and eigenvectors; the characteristic equation and roots of polynomials; diago-nalization; complex vector spaces and inner product spaces; selected application.
Lectures, 3 hours per week; lab, l hour per week.
Prerequisite: MATH 1P12.
Completion of this course will replace previous assigned grade in MATH 2F10.

MATH 2P13
Abstract Linear Algebra
Vector spaces over fields; linear transformations; diagonalization and the Cayley-Hamilton theorem; Jordan canonical form; linear operators on inner product spaces; the spectral theorem; bilinear and quadratic forms.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2P12.
Completion of this course will replace previous assigned grade in MATH 2F10.

MATH 2P20
Numerical Analysis I
Elementary techniques for solving, algebraic equations, systems of linear equations, eigenvalues and eigenvectors of matrices; numerical differentiation, integration and interpolation. Some theory of efficiency and precision of algorithms; some computer applications.
Lectures, 4 hours per week.
Prerequisites: MATH 1P12 (may be taken concurrently), MATH 1P93 and 1P94 (1F00).

MATH 2P50
Euclidean and NonEuclidean Geometry I
The development of Euclidean and non-Euclidean geometry from Euclid to the 19th century. The deductive nature of plane Euclidean geometry as an axiomatic system, the central role of the parallel postulate and the general consideration of axiomatic systems for geometry in general and nonEuclidean geometry in particular. Introduction to transformation geometry.
Lectures, tutorial, 4 hours per week.
Prerequisite: one MATH credit.
Completion of this course will replace previous attempts in MATH 2F94.

MATH 2P51
Great Moments in Mathematics I
Triumphs in mathematical thinking with emphasis on many cultures up to 1000 AD. Special attention is given to analytical understanding of mathematical problems from the past, with reference to the stories and times behind the people who solved them. Students will be encouraged to match wits with great mathematicians by solving problems and developing activities related to their discoveries.
Lectures, 4 hours per week.
Prerequisite: one MATH credit.
Completion of this course will replace previous attempts in MATH 2F92.

MATH 2P52
Principles of Mathematics for Primary and Junior Teachers
Mathematical concepts and ideas in number systems; geometry and probability arising in the Primary and Junior school curriculum.
Lectures, seminar, 4 hours per week.
Restriction: students must have a minimum of 5.0 overall credits.
Note: designed to meet the mathematics admission requirement for the Primary/Junior Preservice program of the Faculty of Education at Brock University. Not open to students holding credit in any grade 12 (Advanced)/OAC or university mathematics course.
Completion of this course will replace previous assigned grade in MATH 2P02.

MATH 2P60
Introductory Operations Research
Project management: CPM, PERT. Linear programming: formulation, graphical solution, simplex method, duality, examples. Special LP problems: transportation, assignment. The two-player zero-sum game and the minimax theorem. Elements of decision theory: utility, Bayesian models. Multiple regression. Inventory models: EOQ and generalizations. Queuing theory.
Lectures, lab, 5 hours per week.
Prerequisites: MATH 1P97 and 1P98.
Note: designed for students in Business.

MATH 2P71
Introduction to Combinatorics
Permutations, combinations, binomial and multinomial expansions; the inclusionexclusion principle; recurrence relations; ordinary and exponential generating functions. Introduction to graph theory including isomorphism, trees, Euler and Hamilton path problems, planarity and map colouring. Pigeonhole principle and an introduction to classical Ramsey theory.
Lectures 3 hours, tutorial, 1 hour per week.
Prerequisites: two OAC mathematics credits.
Completion of this course will replace previous assigned grade in MATH 1P90 and 2P01.

MATH 2P72
Discrete Optimization
Problems and methods in discrete optimization. Linear programming: problem formulation, the simplex method, software, and applications. Network models: assignment problems, max-flow problem. Directed graphs: topological sorting, dynamic programming and path problems, and the travelling salesman's problem. General graphs: Eulerian and Hamiltonian paths and circuits, matchings.
Lectures, 3 hours per week; lab, l hour per week.
Prerequisite: MATH 1P12.
Completion of this course will replace previous assigned grade in MATH 2P60.

MATH 2P81
Probability
Probability, events, algebra of sets, independence, conditional probability, Bayes' theorem. Random variables and their univariate, multivariate, marginal and conditional distributions. Expected value of a random variable, the mean, variance and higher moments, moment generating function, Chebyshev's theorem. Discrete and continuous distributions. Transforming random variables, central limit theorem and its applications.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2F00 or 2P03.
Note: MATH 2P03 may be taken concurrently
Completion of this course will replace previous assigned grade in MATH 2F96.

MATH 2P82
Mathematical Statistics
Random sample from a distribution, sample mean and variance. Sampling from normal population, chi-square, and distributions. Sample median and order statistics, descriptive statistics. Estimating parameters, unbiased estimators, the concept of consistency, efficiency and robustness. Point and interval estimation of population parameters. Hypothesis testing, type I and II errors, power function, likelihood-ratio test. Linear regression and correlation analysis. Analysis of variance. Nonparametric methods.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2P81.
Completion of this course will replace previous assigned grade in MATH 2F96.

MATH 3F00
Real and Complex Analysis I
Real numbers, uniform convergence, the space of continuous functions C[a,b], Riemannn-Stieltjes integration, Weierstrass approzimation theorem. Fourier series, the Cauchy-Riemann and Laplace equation, complex integration, complex analytic functions, Cauchy's integral theorem and formulas, Taylor series, residue calculus, geometric properties of analytic functions, (conformal maps).
Lectures, 4 hours per week.
Prerequisite: MATH 2F00.

MATH 3F40
Mathematics Integrated with Computers and Applications III
Advanced applications of mathematics involving computers. Topics may include deterministic models; equilibrium; optimal control; probabilistic models; models from physics such as the n-body problem, the heat equation and finite element methods, and the driven pendulum; image compressing; genetic algorithms; neural nets; optimization and stochastic processes.
Lectures, 2 hours per week; computer lab, 3 hours per week.
Prerequisites: MATH 2F00 or 2P03; MATH 2P40 and 2P82 (2F96).
Corequisite: MATH 2P72.
Note: projects demonstrating creative application of the course content.

MATH 3F65
Mathematical Methods for Computer Science
Applied probability, Markov chains, Poisson and exponential processes, renewal theory, queuing theory, applied differential equations. Networks, graph theory, reliability theory, NPcompleteness.
Lectures, 4 hours per week.
Prerequisites: MATH 1P12, 1P66, 1P67 and 1P97.

MATH 3F94
Differential Equations
Linear equations, series solutions, Laplace transforms and operator methods, systems of equations, basic existence theorem, Sturm-Liouville theory, Bessel and Legendre functions, orthogonal polynomials, eigenvalue problems. Fourier series, simple partial differential equations and goundary-value problems.
Lectures, 4 hours per week.
Prerequisite: MATH 2F00 or 2F95 or permission of the department.

MATH 3P03
Real Analysis
Approximation of functions by algebraic and trigonometric polynomials (Taylor and Fourier series); Weierstrass approximation theorem; Riemann integral of functions on Rn, the Riemann-Stieltjes integral on R; improper integrals; Fourier transforms.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite: MATH 2F00 or 2P04.
Completion of this course will replace previous assigned grade in MATH 3F00.

MATH 3P04
Complex Analysis
Algebra and geometry of complex numbers, complex functions and their derivatives; analytic functions; harmoncic functions; complex exponential and trigonometric functions and their inverses; contour integration; Cauchy's theorem and its consequences; Taylor and Laurent series; residues.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisites: MATH 2F00 or 2P03: MATH 2F05 (2F95).
Completion of this course will replace previous assigned grade in MATH 3F00.

MATH 3P08
Advanced Differential Equations
Linear second-order differential equations. Integral transform methods, series solutions, special functions (Bessel, Legendre, Laguerre, Hermite). Boundary value problems and general Sturm-Liouville theory, orthogonal functions, series expansions. Linear autonomous systems and phase plane analysis. Emphasis on applications to physical sciences.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2F05 (2F95) or 2P08.
Completion of this course will replace previous assigned grade in MATH 3F94.

MATH 3P09
Partial Differential Equations
First-order equations and method of characteristics. Second-order linear equations, initial and boundary value problems for the heat equation, wave equation, and Laplace equation. Fourier series, cylindrical (Bessel) and spherical (Legendre) harmonic series. Eigenfunction problems and normal modes. Nonlinear wave equations. Emphasis on applications to physical sciences.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisites: MATH 2F05 (2F95) or 2P08.
Completion of this course will replace previous assigned grade in MATH 3F94.

MATH 3P12
Applied Algebra
Group theory with applications. Topics include modular arithmetic, symmetry groups and the dihedral groups, subgroups, cyclic groups, permutation groups, group isomorphism, frieze and crystallographic groups, Burnside's theorem, cosets and Lagrange's theorem, direct products and cryptography.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 1P12.
Completion of this course will replace previous assigned grade in MATH 3F10 and 3F92.

MATH 3P13
Abstract Algebra
Further topics in group theory: normal subgroups and factor groups, homomorphisms and isomorphism theorems, structure of finite abelian groups. Rings and ideals; polynomial rings; quotient rings. Division rings and fields; field extensions; finite fields; constructability.
Lectures, 3 hours per week; lab/tutorial 1 hour per week.
Prerequisite: MATH 3P12.
Completion of this course will replace previous assigned grade in MATH 3F10.

MATH 3P50
Euclidean and NonEuclidean Geometry II
Topics in Euclidean and non-Euclidean geometry chosen from the classification of isometries in selected geometries, projective geometry, finite geometries and axiometic systems for plane Euclidean geometry.
Lectures, 4 hours per week.
Prerequisites: MATH 1P12 and 2P50.
Completion of this course will replace previous attempts in MATH 2F94.

MATH 3P51
Great Moments in Mathematics II
The development of modern mathematics from medieval times to the present. The course includes Fibonacci's calculation revolution, the disputes over cubic equations, Pascal and probability, Fermat's last theorem, Newton and Calculus, Euler and infinite series, set theory and the possibilities of inconsistencies in mathematics.
Lectures, 4 hours per week.
Prerequisites: MATH 1P02 (1F00 or 1P94) and 1P12.
Completion of this course will replace previous attempts in MATH 2F92.

MATH 3P60
Numerical Methods
Survey of computational methods and algorithms; basic concepts (algorithm, computational cost, convergence, stability); roots of functions; linear systems; numerical integration and differentiation; Runge-Kutta method for ordinary differential equations; finite-difference method for partial differential equations; fast Fourier transform; Monte Carlo methods. Implementation of numerical algorithms in a scientific programming language.
Lectures 3 hours per week; lab 1 hour, per week.
Prerequisites: MATH 1P02 (1F00 or 1P94) and 1P12.

MATH 3P72
Continuous Optimization
Problems and methods in non-linear optimization. Classical optimization in Rn: inequality constraints, Lagrangian, duality, convexity. Non-linear programming. Search methods for unconstrained optimization. Gradient methods for unconstrained optimization. Constrained optimization. Dynamic programming.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisites: MATH 2F00 or 2P03; MATH 2P60 or 2P72.

MATH 3P81
Experimental Design
Analysis of variance; single-factor experiments; randomized block designs; Latin squares designs; factorial designs; 2f and 3f factorial experiments; fixed, random and mixed models; nested and nested-factorial experiments; Taguchi experiments; split-plot and confounded in blocks factorial designs; factorial replication; regression models; computational techniques and computer packages, related topics.
Lectures, 3 hours per week; lab, 1 hour per week.
Prerequisite: MATH 2P82 (2F96).
Completion of this course will replace previous assigned grade in MATH 3P95.

MATH 3P82
Regression Analysis
Simple and multiple linear regression and correlation, measures of model adequacy, residual analysis, weighted least squares, polynomial regression, indicator variables, variable selection and model building, multicollinearity, time series, selected topics.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2P82 (2F96).
Completion of this course will replace previous assigned grade in MATH 4P22.

MATH 3P91
Mathematics at the Junior/Intermediate Level
A treatment of mathematics and its teaching and learning issues at the junior and intermediate levels. A major portion of the course will involve directed projects.
Lectures, seminar, 4 hours per week.
Restriction: open to BSc/BEd majors with a minimum of 9.0 overall credits.
Note: designed for students in the concurrent Mathematics and Education program.

MATH 3P97
Introductory Topology
Introduction to metric and topological spaces; connectedness, completeness, count ability axioms, separation properties, covering properties, metrization of topological spaces.
Lectures, 4 hours per week.
Prerequisites: MATH 2F00 or 2P04; MATH 2P12 and 2P13 (2F10) or MATH 3P12 and 3P13 (3F10).

MATH 3P98
Functional Analysis
Introduction to the theory of normed linear spaces, fixed-point theorems, StoneWeierstrass approximation on metric spaces and preliminary applications on sequence spaces.
Lectures, 4 hours per week.
Prerequisite: MATH 3P97.

MATH 4F08
Topics in Differential Equations
Topics vary from year to year. Ordinary differential equations: existence and uniqueness theory, strange attractors, chaos, singularities. Partial differential equations: existence and uniqueness theory, Cauchy-Kovalevski theorem, weak solutions, nonlinear equations and global solutions, waves and solitons, integrable systems.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 3F94 or MATH 3P08 and 3P09.
Completion of this course will replace previous assigned grade in MATH 4F52.

MATH 4F10
Topics in Algebra
A treatment of several advanced topics drawn from group theory, theory of rings and modules, Galois theory, lattice theory, homological algebra and applications of algebra in geometry.
Lectures, 4 hours per week.
Prerequisite: MATH 3P13 (3F10).

MATH 4F90
Honours Project
A small independent project in an area of pure or applied mathematics, or mathematics education
Restriction: open to MATH (single or combined) majors with either a minimum of 14.0 credits, a minimum 70 percent major average and a minimum 60 percent non-major average or approval to year 4 (honours) and permission of the instructor.
Note: carried out under the supervision of a faculty member. The supervisor must approve the topic in advance. Presentation of the project is required.

MATH 4F91
Advanced Topics
Topics vary from year to year. Topics may include number theory, problems in real or complex analysis, sum ability theory, differential geometry, differentiable manifolds, algebraic topology, approximation theory, dynamical systems, foundations of mathematics.
Seminar, 4 hours per week.
Restriction: permission of the department.
Completion of this course will replace previous assigned grade in MATH 4F16.

MATH 4P03
Advanced Real Analysis
Lebesgue integration on Rn; differentiation and absolute continuity; Fubini's theorem; Lp spaces, elementary theory of Banach and Hilbert spaces.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite: MATH 3F00 or 3P03.
Completion of this course will replace previous assigned grade in MATH 4F02.

MATH 4P04
Advanced Complex Analysis
Proof of Cauchy's integral theorem, maximum-modulus principle, conformal mapping; Riemann's mapping theorem. Topics selected from: zeros of holomorphic functions, analytic continuation and asymptotic expansions.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Prerequisite: MATH 3F00 or 3P04.
Completion of this course will replace previous assigned grade in MATH 4F02.

MATH 4P61
Theory of Computation
Regular languages and finite state machines: deterministic and non-deterministic machines, Kleene's theorem, the pumping lemma, Myhill-Nerode Theorem and decidable questions. Context-free languages: generation by context-free grammars and acceptance by pushdown automata, pumping lemma, closure properties, decidability. Turing machines: recursively enumerable languages, universal Turing machines, halting problem and other undecidable questions.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Restriction: open to (single or combined) COSC majors.
Prerequisite: Math 1P67.
Note: MATH students may take this course with permission of department.
Completion of this course will replace previous assigned grade in MATH 4P19.

MATH 4P71
Combinatorics
Review of basic enumeration including distribution problems, inclusion-exclusion and generating functions. Polya theory. Finite fields. Orthogonal Latin squares, affine and projective planes. Coding theory and cryptography.
Lectures, 3 hours per week; tutorial, 1 hour per week.
Restriction: permission of the department.
Note: while no specific course is an essential prerequisite, students should have competence in abstraction equivalent to that obtained by successful completion of MATH 2F10.
Completion of this course will replace previous assigned grade in MATH 4P20.

MATH 4P72
Game Theory
(also offered as ECON 4P72)
Applications of modelling, review of elementary decision theory and subjective probability theory, game theory (Nash equilibrium, two player NZS games, Nash cooperative solution), Shapley value, voting power, selected cases from economics and other applications.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: one of MATH 2P60, 2P72, ECON 3P91.
Completion of this course will replace previous assigned grade in MATH (ECON) 4P59.

MATH 4P81
Sampling Theory
Theory of finite population sampling; simple random sampling; sampling proportion; estimation of sample size; stratified random sampling; optimal allocation of sample sizes; ratio estimators; regression estimators; systematic and cluster sampling; multi-stage sampling; errors in surveys; computational techniques and computer packages; related topics.
Lectures, 3 hours per week; lab, 1 hour per week.
Prerequisite: MATH 2P82 (2F96).
Completion of this course will replace previous assigned grade in MATH 3P96.

MATH 4P82
Nonparametric Statistics
Order statistics, rank statistics, methods based on the binomial distribution, contingency tables, Kolmogorov Smirnov statistics, nonparametric analysis of variance, nonparametric regression, comparisons with parametric methods.
Lectures, 3 hours per week; lab/tutorial, 1 hour per week.
Prerequisite: MATH 2P82 (2F96).
Completion of this course will replace previous assigned grade in MATH 4P23.