Articles by author: sackles

  • Let’s Adapt to Climate Change — Adaptation Series Post 2: Technology-based Adaptation (TbA)

    Examples of TbA application – Artificial Intelligence


    Technology has the potential to help us adapt to climate change and Technology-based adaptation (TbA) strategies can support the Niagara’s agricultural sector. But what is TbA? TbA aims to maintain the resilience of various crop systems by using both traditionally available and innovative technologies. The following TbA strategies have been found most relevant to Niagara’s agricultural sector.

    Community-based weather monitoring systems provide local farmers with early forecasts and warnings of changing weather conditions so they can be better prepared to cope with weather uncertainties (e.g. in Niagara, Vine Alert is used to alert grape growers of impending frost or extreme low winter temperatures so they can turn on their wind machines and protect their crop). These systems have become popular because of their affordability and low capital and operational costs. Weather monitoring systems can be the first point of reference for farmers to accordingly shift their sowing and harvesting periods following changes in temperature and precipitation patterns. Considering Niagara’s geography and topography, decentralized community-based weather monitoring systems can be effective for improving adaptive responses.

    Integrated Nutrient Management (INM) is another very promising TbA that involves the balanced application of both natural amendments (manure, compostable wastes) and man-made fertilizers (mineral/synthetic fertilizers) to maintain healthy soils. INM can be successfully applied at both large and small-scale farms and leads to higher yields, better resistance against plant diseases, pests and droughts, especially if organic matter is added.

    Examples of TbA application – Drip Irrigation

    Drip irrigation allows for a controlled delivery of water to the root zone of plants through a system of pipes, valves, tubing and emitters. In the Niagara Region (especially in light of increasing droughts), this system has expanded, mainly in vineyards and in greenhouses.  It offers one of the most efficient water use mechanisms for agriculture with minimal waste. This may lead to increased yield and a reduction in plant diseases.  The best part is that drip irrigation can be used for the growth of both greenhouse and field crops — fruits and vegetables, in particular. Careful monitoring is required as it leads to algal growth and the build-up of sediments in pipes, which caused reduced efficiency and increases the chances of contamination. The capital cost of installation can also be prohibitive. But, with advances in research on the technology, its affordability is improving.

    Rainwater harvesting is also a very well-established TbA to reduce water shortage during droughts. Rainwater harvesting refers to the collection and transfer of rainwater from a roof to a storage tank (rain barrel or even a retention pond) for future utilization. In Ontario, retention ponds have been used for more than a century to reduce flooding and, around farmlands, to increase water availability for irrigation. One of the other positives about rainwater harvesting is that it is suitable for both greenhouse use and for field growers. On the other hand, rainwater harvesting systems have high initial capital costs and may also result in algal blooms if proper maintenance is not regularly undertaken.

    The newest TbA tactics involve the use of artificial intelligence (AI) and machine learning tactics to automate irrigation systems and make them more efficient. The application of AI makes irrigation systems very precise as the sensors collect real-time data on various parameters, like soil moisture, climate and lux (light) conditions on the farm and then release the required amount of water to the crops. Drones can also be used to precisely map the areas where irrigation or nutrients are most needed (also referred to as precision agriculture). Drones can assist with monitoring for pest outbreaks or localized flooding in some parts of the fields. With advanced sensors and research in the domain of software integration, drones are becoming increasingly popular in agriculture. AI systems offer several advantages for both greenhouse and outside growers. On the other hand, AI systems acquisition and maintenance can be expensive, and those systems require the use of highly skilled labour to operate.

    Conservation tillage can also be considered a TbA. It comprises a variety of soil preparation practices where new crops are planted on previous crop residues that have been purposely left behind on the field (about 1/3 of crop residue). Conservation tillage practices are popular because they minimize the energy required in land preparation for agriculture while improving the retention of water and organic matter that further enhances productivity. Therefore, it has been extensively applied in the growing of fruits, vegetables and grain, as well as in vineyards. Conservation tillage measures also improve an agricultural system’s coping capacity to drought and uneven rainfall by minimizing soil erosion and fuel and labour requirements. The Niagara Peninsula Conservation Authority (NPCA) has suggested conservation tillage as one of the Best Management Practices to reduce soil erosion and improve water quality in the Niagara Region.

    To sum up, an integration of traditional and innovative technologies can be promosing for the Niagara region and, when combined with any other approaches, can help enhance the resilience of our agricultural sector.

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith DeCock, Bradley May, Pulkit Garg, Sam Gauthier and Jocelyn Baker) to learn more about the project and how you can get involved. You can also visit our website at brocku.ca/unesco-chair or email us at meopar-lincoln@brocku.ca

     

    Categories: MEOPAR-Lincoln Blog

  • Let’s Adapt to Climate Change — Adaptation Series Post 1: Ecosystem-based Adaptation (EbA)

    An example of EbA application at farms – Windbreaks


    Since it began, the MEOPAR project has focused on adaptation to climate change. In our next four blogs, we will examine different approaches to adaptation, which, as a reminder, refers to any adjustment or response to reduce the negative impacts of climate change.

    In this blog, we will introduce the concept of Ecosystem-based Adaptation, or EbA for short.

    EbA encompasses the various measures that can help both the natural and human components of our ecosystems adapt to climate change. This is achieved by promoting biodiversity conversation, ecological restoration and sustainable resources management. These actions reduce vulnerability and support the development of adaptive capacity and resilience.

    The following EbA strategies have been found most relevant to Niagara’s agricultural sector:

    An example of Windbreaks used in the agricultural sector.

    Windbreaks: Planting windbreaks, or shelterbelts, is a common EbA practice that has been used by the agricultural sector (especially in Europe) for a very long time. It involves planting shrubs and trees, which can be a mix of deciduous or evergreen (single row or multi-row) crops. Windbreaks are effective as an EbA strategy against strong winds, soil erosion and snow accumulation (through the use of a living snow fence) as they obstruct and alter wind flow patterns resulting in reduced wind speeds. For Niagara, windbreaks can be useful for protecting perennial fruit crops as well as annual crops. It is important to note that windbreaks may involve capital investment and increase maintenance costs, and that the placement of them must be selected carefully in order to avoid competition for nutrients with crops.

    Integrated Pest Management (IPM): IPM involves a series of steps that includes the preparation of soil and crop planting, trapping of pests, monitoring and inspection, designing of cultural, biological and chemical controls, and record-keeping that minimizes overall economic, health and environmental risks. IPM also includes the use of pesticides, but only when there is a pest outbreak. In Ontario, IPM has been used extensively for apples (to manage black rots, blister spots, scabs, borers, moth), raspberries (to manage spur blight, cane blight, orange rust), grapes (to control parasitic nematodes), as well as most greenhouse crops. The application of IPM can help maintain ecosystem health and decrease pesticide use as well as the probability of the development of pesticide-resistant insects. In the Niagara region, institutions like Brock University, Niagara College and Niagara Orchard and Vineyard Corporation are actively involved with farmers for IPM research.

    Miscellaneous measures: Various other EbA measures have also been identified for Niagara’s agricultural system. For example, intercropping (mixed, row, strip, relay), and crop diversification, with alternate rows or plots of different crops species or varieties, can reduce pre/post-harvest losses and improve resilience to the impacts of climate change (such as higher annual rainfall, average temperatures, and droughts). Other successful EbA techniques include tile drainage, cover cropping (e.g., legumes, white clover), and drought-resistant crops (pearl millets, sorghum) for improved drought resilience and profitability. These techniques are relevant to both field (e.g., soybean and corn) and greenhouse crops. Restoring a pasture into a tallgrass prairie (a natural system originally present in the Niagara) can also help provide fodder to animals during droughts.

    EbA is based on a participatory, integrated and inclusive approach to climate change adaptation. It has the potential to reduce the vulnerability of Niagara’s agricultural system to climate change, and to contribute to the development of a more resilient farming community.

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith Caspell, Bradley May, Pulkit Garg, Sam Gauthier & Jocelyn Baker) to learn more about the project and how you can get involved. You can also visit our website at brocku.ca/unesco-chair or email us at meopar-lincoln@brocku.ca

     

    Categories: MEOPAR-Lincoln Blog

  • Shifting away from black bin use: Simple lifestyle changes to reduce your household waste

    Do you ever wonder what happens to your waste once it is picked up from your bins? Asking ourselves this on a regular basis is an important part of understanding how our actions are part of a complex problem that municipalities are working to resolve. Last week, we discussed the benefits of the new waste collection schedule for the Niagara Region. These benefits include the reduction of Green House Gases (GHG) as well as a decrease in both the amount of pollutants that leach into the environment and the amount of land required to bury our garbage. But how does this translate to action, and how can we make this shift to reduce our black bin (or garbage bin) use easier?

    As humans, we are social beings and are influenced by the actions of others. Our neighbours’ habits can impact our own, often without us even realizing it. If you see that your neighbours are shovelling their sidewalk when it snows, you are more likely to want to get out and shovel yours. The same goes for recycling and composting­ — if you believe your neighbours regularly recycle, you are more likely to do so yourself. Convenience and over-consumption are among of the biggest barriers to overcoming waste challenges. It is easy to not think about your waste because in a week or two, it will be off your property. The negative impacts of improper waste management extend beyond your curb, however. Although your waste might be out of sight and out of mind after collection day, the impacts of that waste extend beyond the local level, having global implications that continue long after it has been emptied from your bins.

    One way to begin changing your habits is to challenge yourself to use your recycling and compostable bins more frequently. The best way to do this is by tracking what you put in the garbage each day. After trying it out for a week, you may catch yourself putting waste in the wrong place!

    Here are some tips for helping reduce the waste in your black bin or bag:

    • Buy items in bulk (some stores may not allow you to bring your own containers during the pandemic, but typically, you can bring a reusable container)
    • Re-use your plastic bags, or better yet, use containers or re-usable beeswax wraps (see our creative kitchen blog post)
    • Remind yourself to choose the alternative with less packaging while shopping (buying fresh fruits and vegetables that don’t come in plastic wrap, for example)
    • Tape a reminder near your garbage can that will prompt you to think about whether your item truly belongs in the trash, or if it could be recycled or composted, instead
    • Educate yourself and your family members by using the ‘Where does it go?’ tool on the Niagara Region’s website. You simply type in any item that you you no longer want (from pizza boxes to empty laundry detergent jugs) and it will tell you which bin it goes in
    • Only buy what you truly need

    If you are a new homeowner or renter, the Region provides you with free containers for your waste, recycling, and compost! If you have been living in your dwelling for more than a year, you can still purchase containers or use other acceptable alternatives. Having a bin for each of the waste streams will set yourself up for success.

    Ontario’s zero waste goals will require collective efforts from everyone across the province. These goals include a 50 per cent waste diversion rate (that is, non-garbage material into green, blue or grey bins instead of black bins) by 2030 and a 80 per cent diversion rate by 2050. The Niagara Region can be a leader in this effort—starting with you and the actions you take in your home. When we take on more responsibility for our consumption and waste practices, we are doing our part to reduce greenhouse gas emissions while making our communities more sustainable for us all.

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith DeCock-Caspell, Bradley May, Pulkit Garg, Sam Gauthier & Jocelyn Baker) to learn more about the project and how you can get involved. You can also email us at meopar-lincoln@brocku.ca

    Categories: MEOPAR-Lincoln Blog

  • The Role of Perimeter Plantings in Vineyards

     A perimeter planting (border vegetation at right of photo) at an organic vineyard in Niagara-on-the-Lake, Ontario (Photo: Kasia Zgurzynski).


     Driving through Niagara’s wine country, you are likely to see many vineyards, often in close proximity to one another. What frequently separates these properties are fence-like rows of vegetation known as perimeter plantings (or hedgerows). The use of perimeter plantings in agricultural fields dates back to at least Medieval times in Ireland and England. Perimeter plantings can be remnants of previous forests, or, in many cases, farmers actively choose to plant and maintain vegetative borders with an understanding that these borders have the potential to be valuable elements of the agricultural landscape.

    There are many obvious services that perimeter plantings provide for vineyards. They can provide a protective barrier between properties, for example, filtering airborne weed seeds from neighbouring farms or reducing drifting snow during winter storms (especially if there are conifers). The above-ground density of perimeter plantings can also reduce the potential damage that winds can have on grapevines, as well as reducing the amount of wind-caused erosion of exposed soil. Wind is also a major driver of moisture loss, and perimeter plantings can reduce this impact, as well.

    Perimeter plantings offer other advantages as introduced species mingle with native and cultivated species to provide higher biodiversity than what would typically be found in a vineyard. Many species rely on these perimeters as a connection between habitats that would otherwise be isolated from each other, acting as a corridor for birds, insects, mammals, reptiles and amphibians. Sometimes farmers will also plant specific plant species in order to attract natural enemies of pest insects or pollinators. Perimeter plantings can provide food and overwintering habitat for parasitic wasps and predatory beetles, for example, both of which act as pest control. However, some insect pests can also use the perimeters to overwinter or to find alternative hosts. Wild grapevines may inadvertently be found in perimeter plantings and they may need to be removed as they can attract the Grape Berry Moth, a common pest in vineyards. Managing perimeter plantings can help maintain a functional mix of plant species that can potentially attract beneficial insects while simultaneously minimizing the attraction of pest species.

    Although some potential drawbacks exist with having lush perimeter plantings, the services that they provide are valuable on many levels, to us as humans and the ecosystems we inhabit. As we continue to face increasing impacts from climate change, it is important to be equipped with the tools necessary to adjust and react accordingly. Grape growers are stewards of the land that they cultivate, and research on perimeter plantings can support them in their roles by providing practical solutions to complex challenges, including those caused by a changing climate.

    This blog section will be ongoing throughout the duration of the project with bi-weekly updates provided by Liette Vasseur, Heather VanVolkenburg, Kasia Zgurzynski, Habib Ben Kalifa, and Diana Tosato (see research team). We will be providing research activity updates as well as informative pieces that delve into agricultural concepts and important global issues as they relate to agricultural sustainability and climate change. Stay tuned for regular updates!

     

     

    Categories: Organic Science Cluster 3 Blog

  • Cover Crops in the Vineyard

    Three examples of leguminous plant species being tested as cover crops here in local Niagara vineyards. From left: Trifolium incarnatum (crimson clover), Trifolium repens (white clover) and Melilotus officinalis (yellow sweet clover) (Photos: Kasia Zgurzynski)


    Grapevines are not the only plants at work in a typical vineyard. Growers often incorporate additional species of plants in between and (less often in Canada) under the rows of vines as a way to boost growing conditions and potentially improve berry yield. These additional cultivated plants are called cover crops. Cover crops are not typically harvested, but rather serve to enhance the growing environment. Since plants provide a multitude of functions in nature and form the foundation of healthy ecosystems, it should come as no surprise that cover crops can be a useful vineyard management tool. Some examples of environmental enhancement that can be achieved by cover cropping are improved water infiltration, decreased soil runoff and erosion, weed control or the promotion of beneficial insects.

    Cover crops can include various species of legumes (e.g., clover, vetch), forbs (e.g., chicory, oilseed radish) or grasses (e.g., fescue, timothy grass). Most legume species develop a reciprocal relationship with bacteria in the soil. These bacteria are beneficial and help capture the nitrogen and transform it to a form that can be absorbed by plants, making this key nutrient biologically available for the cash crop. Many grasses work as a kind of natural mulch, protecting the soil from drying out and suppressing the growth of weeds. Flowering plants with long and tough roots can break up the compaction in the soil, making it easier for water and oxygen to infiltrate deeply throughout the rooting zone, and drawing up water and nutrients from deep within the soil.

    Sometimes, the true benefits of cover crops occur when they are turned back into the soil, providing the organic matter and nutrients necessary to maintain soil health. Cover crops can also be an important nectar and food source for beneficial insects, such as parasitic wasps that can control leafhoppers. That being said, depending on the species and where or when they are planted, cover crops may actually compete with the cash crop, introduce disease or  impede wind flow between rows, so careful selection is important for the system to perform optimally. With climate change and the possibility of more climate variability, such as droughts and heavy rainfall, the presence of cover crops can help buffer the impacts of soil runoff or drought-induced soil cracking.

    Overall, cover crops have the potential to be a relatively inexpensive and effective strategy for improving the health of the vineyard from the ground up. A plant does not have to be a cash crop to perform a service for the vineyard. These crops can also help integrate the vineyards more holistically into the surrounding landscape. The ecological services provided by cover crops are substantial even beyond the vineyard, as well, allowing vineyard owners to improve their own crops while also providing benefits to nearby growers and the surrounding ecosystem in the process.

    This blog section will be ongoing throughout the duration of the project with bi-weekly updates provided by Liette Vasseur, Heather VanVolkenburg, Kasia Zgurzynski, Habib Ben Kalifa, and Diana Tosato (see research team). We will be providing research activity updates as well as informative pieces that delve into agricultural concepts and important global issues as they relate to agricultural sustainability and climate change. Stay tuned for regular updates!

     

    Categories: Organic Science Cluster 3 Blog

  • Wetlands: Our natural flood protection partner

    Niagara Peninsula Conservation Authorities E.C. Brown Wetland Restoration site in South Pelham with Katleya Young-Chin, Ecosystem Restoration Specialist.


    Wetlands are among the most biologically diverse ecosystems on Earth, supporting well over 100,000 species globally. Humans rely on this diversity for a wide range of goods and services (known as ecosystem services), and wetlands are important for the social, economic and ecological health of our country.

    Despite their obvious contributions, however, more than 87 per cent of our global wetlands have been lost, primarily due to land conversion, invasive species and climate change. Southern Ontario, the most biologically diverse life zone in Canada (home to over 2,500 species of plants and animals), has lost over 90 per cent of its original wetlands due to urbanization and agriculture. As one quarter of all the wetlands in Canada are found in Ontario, their disappearance in the province has had a significant impact and been associated with increased flooding as well as the deterioration of wildlife biodiversity and water quality.

    Wetlands play a significant role in climate change mitigation and adaptation, by helping to reduce and prevent flooding. Acting as natural “sponges,” wetlands capture and slowly release water back into the environment after rain events. Since our human-made infrastructures (buildings, roads, parking lots) are not permeable, water will quickly “runoff” to the nearest low point. In urban settings, that runoff usually flows to storm drains, and most of those drains then directly discharge in creeks, rivers or lakes. This fast transfer of water (stormwater runoff) can quickly overwhelm creeks, rivers, and stormwater systems and when excess water has no place to go, flooding happens. Contrary to the common belief, quickly moving water off the landscape will not reduce flooding, it actually increases it. Too much water in such systems leads to blockage and back-up (including in houses).

    To illustrate how flooding can happen in urban areas, consider an average sized house which typically generates approximately 2,000 litres of runoff during a typical rain event. This is about the equivalent of 150 bathtubs full of water. In Niagara, with close to a quarter of a million dwellings, this is the equivalent to filling 1.7 million bathtubs, or 100 Olympic swimming pools, with stormwater.

    Niagara and its surrounding areas have seen significant wetland losses, currently approaching 90 per cent. That losss, coupled with the increased storm frequency and intensity caused by climate change, is causing large volumes of stormwater to be generated which is overwhelming infrastructure and causing flooding that is reaching disastrous proportions.

    An example of this was seen in Walkers Creek, St. Cathraines, on September 3, 2018, when a high instensity storm dumped one metre of rain water on the North end of the City within a two- hour period, causing widespread road and basement flooding.

    A 2019 study by the Canadian government looked at ecosystem services provided by wetlands. The study found that each hectare (ha) of wetland located in the upstream portions of urban watersheds (drainage area) could provide upto $3,500/ha in flood damage reduction by intercepting and absorbing rainwater before it reaches urban centres. All remaining Canadian wetlands, if used wisely, can sustain biodiversity and ecosystem services for future generations. Where wetland functions have been degraded, conservation and restoration partnerships should be explored. This process should start with the owners of the land, which may include private, public, government and Indigenous communities. Wetlands, as part of planned green networks, provide multiple economic benefits, including relief from storm flooding.

    Locally, the Niagara Peninsula Conservation Authority has a partnerhip with Ducks Unlimited Canada for wetland restoration and conservation initiatives and is a great place to find out more information www.npca.ca

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith DeCock-Caspell, Bradley May, Pulkit Garg, Sam Gauthier & Jocelyn Baker) to learn more about the project and how you can get involved. You can also email us at meopar-lincoln@brocku.ca

    Categories: MEOPAR-Lincoln Blog

  • Utilizing Mother Nature to help vineyards adapt to climate change

    An example of a NbS, Alyssum plants (white flowers – foreground) have been planted in these Niagara strawberry fields (background) to attract beneficial insects to the crops (Photo: Heather VanVolkenburg)


    Have you ever noticed that nature has some ingenious ways of dealing with change? Natural systems can adjust in order to respond to environmental or climate changes; plants, for example,  can change the timing of bloom or grow slower during droughts. Nature can also be a source of inspiration for farm managers and is part of what we call Nature-based Solutions (NbS).

    Nature-based Solutions include, but are not limited to, actions that address challenges that farmers are facing by protecting, sustainably managing, and restoring agroecosystems and their adjacent landscapes. These challenges can stem from environmental or climate changes that threaten the sustainability of production systems. By utilizing and implementing tools and strategies that we know work in natural systems, NbS can simultaneously provide support for agricultural production, its supporting ecosystem and, ultimately, human well-being.

    High biodiversity is intimately connected to NbS and directly correlated to an ecosystem’s ability to cope with environmental uncertainty (e.g. climate change induced extreme events). In the natural world, it is likely that a community with a relatively high number of plant species will include a few species that are more tolerant of drought or flooding. This diversity can help ensure that the entire community is not lost when a drought or flooding event occurs. Similarly, in agriculture, planting different crop species or varieties can provide some insurance to the farmer if one crop fails. A farmer can also select plant species based on different characteristics, such as the type of invertebrates they attract or repel, or how they compete with other crop plants. Many of these beneficial characteristics evolved first in natural systems, making a strong case for the adoption of NbS in agriculture.

    NbS are based on equity, the inclusion of all sectors of society (farmers, policy makers, consumers, etc.), and the restoration or protection of biological diversity is a top priority. Decisions can vary from local (farm level) to a large landscape (vineyards of the Niagara Region). In all cases, however, decisions should be transparent and integrate sustainable ideas and solutions for all. NbS are also a viable approach for meeting the United Nations Sustainable Development Goals (SDGs) and ensuring that basic societal needs are met in a safe and sustainable environment.

    Like many of the research projects in our lab, our OSCIII project aims to investigate a combination of NbS concepts applied to local vineyard agroecosystems. The next few blogs will outline a few of these potential solutions and how they are being applied in our research.

    This blog section will be ongoing throughout the duration of the project with bi-weekly updates provided by Liette Vasseur, Heather VanVolkenburg, Kasia Zgurzynski, Habib Ben Kalifa, and Diana Tosato (see research team). We will be providing research activity updates as well as informative pieces that delve into agricultural concepts and important global issues as they relate to agricultural sustainability and climate change. Stay tuned for regular updates!

    Categories: Organic Science Cluster 3 Blog

  • MEOPAR Research Highlight: If Coastlines Could Talk

    Coastal communities, such as those along the Great Lakes and St. Lawrence Seaway, have seen changes to their shorelines over a number of decades.

    These changes are the result of several physical (heavy rainfall events, water levels, ice cover) and human-induced (land use change, shoreline protection measures) factors. Although coastlines are dynamic, meaning they are meant and expected to move and change, stretches of the Lincoln coastline are showing high levels of erosion even though they are located in areas not naturally susceptible to erosion. This is a concern that is all too familiar to those who live along the lake and have seen these changes first-hand. Land use changes, such as the addition of a road or a new house along the shore, are partly to blame for these changes. Climate change is also a contributing factor with greater frequency and/or intensity in extreme events, such as heavy rainfall, high winds, and earlier snowmelt.

    Communities must therefore adapt in order to become more resilient to future impacts. It is also important to keep in mind that shorelines will continuously adjust to any changes that take place, whether those are natural processes or human activities. With increasing dynamic patterns of the shores, local residents and governments must have an understanding of the history of the coastline. Knowing what areas of the coastline are more susceptible to erosion and what may have caused these changes can help inform coastline management strategies to maintain shorelines and better protect against these changes.

    MEOPAR Researcher and Brock University Master of Sustainability student Meredith (DeCock) Caspell recently completed a thesis project with the aim of analyzing coastline changes in the Town of Lincoln from 1934 to 2018 using historical air photographs. Physical and human-induced factors were then investigated as possible drivers of these coastline changes. The results of the research highlight the changes over time to several areas of the Lincoln coast that may be more vulnerable to erosion. It also posits patterns to help explain why these changes might have occurred. For example, higher erosion rates occurred between 2015-2018 compared to the other time frames. This could possibly be attributed to recent storm events impacting the coastline in certain areas, including the section of the coasts located near creek outlets such as 30 Mile Creek.

    Caspell combined these photographs with historical maps and commentary to create the interactive ArcGIS StoryMap known as “If Coastlines Could Talk: A Story of Lincoln, ON.”  A StoryMap is a webpage that tells a story through pictures, maps, and words. In this case, it tells the story of the changing Lake Ontario coastline in the Town of Lincoln. To discover these historical changes, see time lapse videos of the coastline changing over time and other interesting visuals, and explore ideas for how we can move forward using a collaborative approach, you can visit the StoryMap on MEOPAR’s website.

    The research team would love for you to share the StoryMap with interested friends and neighbours and to then provide your feedback and reactions directly to the team. You can submit your feedback anytime via email, at meopar-lincoln@brocku.ca, or you can drop in to one of our virtual sessions to talk directly with one of the research members. These virtual events will take place on Wednesday Oct. 14 and Thursday Oct. 15, from noon to 1 p.m., and on Saturday Oct. 17, from 3 to 4 p.m.

    These events are free and open to the public, but registration is required. Please email meopar-lincoln@brocku.ca to register and for event connections details.

    For more information, please visit MEOPAR’s Community Outreach Events webpage.

     

    Categories: MEOPAR-Lincoln Blog

  • The importance of living shorelines in the Greater Niagara Region

    In our previous posts, we have discussed the changing water levels of the Great Lakes and how these fluctuations could cause damage to the shorelines, specifically in the Niagara Region. To minimize the damage to these areas, we can utilize adaptation strategies, such as living shorelines, that work with natural processes to protect and sustain our waterfront.

    Living shorelines, also known as natural shorelines, are an adaptation strategy that involves the creation of a natural shoreline rich in vegetation that can develop strong root systems. The naturalization of shorelines often requires minimal maintenance and, although it requires a large up-front cost, is often cost-effective over the long-term.

    The vegetation acts as a buffer between the water and land and has many long-term benefits. By adding vegetation to shorelines, the roots of these plants will help hold the soil and prevent erosion while also filtering the runoff that flows from the land into the lake. Filtration of runoff reduces the amount of pollution reaching the lakes and can contribute to fewer algae blooms while also maintaining higher water quality. The buffer that is created from this vegetation also prevents flooding. The plants help to slow the velocity of water, allowing it to absorb into the soil instead of coming on to the shore, preventing further damage.

    The natural beauty of living shorelines can also increase the property value of residential areas and create wildlife habitat. This is beneficial for conservation, as more than 70 per cent of land-based wildlife and 90 per cent of aquatic life depend on shorelines at some point in their lives. The shade that is created from shoreline vegetation can also be helpful in moderating temperatures. This is beneficial for plants as a lower temperatures equates to lower levels of water evaporation and healthier plants overall.

    While there are many benefits that can be provided by a living shoreline, it is important to ensure proper planning is undertaken before creating this naturalization. It is essential to both determine the conditions of your land as well as create a layout of your proposed changes to ensure that the area is being used to its full potential. Determining the condition of your land can be done by first looking at any existing vegetation (or lack-there-of) on the property. By determining what existing vegetation is already growing along the shoreline, you can determine things such as the levels of water or moisture in the area, the sun-to-shade ratio, as well as the soil type. This will allow you to plan which new vegetation would be successful for planting in your natural shoreline. You don’t need to be an expert in plant identification to do this, either, as there are many resources available to assist you, such as the Ontario Native Shoreline Plants website. You can also refer to a native plant supplier, who will be able to tell you which plants are most suitable for your property. They will also be able to tell you how, and when, to properly plant each species.

    Shoreline change and water level fluctuations are inevitable; however, there are many ways we can help to prevent the damage in these areas. Make sure to check out our next blog, where we will be highlighting a research project that reveals key areas of concern along the Lincoln coastline using maps and photographs.

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith DeCock-Caspell, Bradley May, Pulkit Garg, Sam Gauthier & Jocelyn Baker) to learn more about the project and how you can get involved. You can also visit our website at brocku.ca/unesco-chair or email us at meopar-lincoln@brocku.ca

    Categories: MEOPAR-Lincoln Blog

  • Water Levels in the Great Lakes: an interaction of time scales

    The Jordan Harbour Rowing Club located south of the QEW flooded in May 2019 due to the high water levels in Lake Ontario.


    Living along two of the Great Lakes (connected by the Niagara River), the Niagara Region is significantly influenced by the lakes’ water levels. The lakes influence our climate which is favourable for agriculture and tourism. However, they also create some challenges, especially when water levels change rapidly due to high rainfall, strong winds, or other extreme weather events. Extreme events may bring daily and even hourly changes in water levels due to strong wave action. The direction of the winds will greatly influence the intensity of these waves and the rapid change in water level.

    Water levels in lakes are therefore complex and many factors can contribute to their variation. The water levels in Great Lakes are influenced by when, and how much, precipitation they receive, as well as how much the surrounding lands (its basin) receive. These are the famous seasonal changes. In general, water levels in the Great Lakes typically peak in the spring and early summer months. The main reason is due to the melting of snow and ice, which brings more water into the lakes. The lowest levels are usually in the fall and winter, as little water is added (unless we have a thaw cycle). This pattern is normal for all lakes, but we can observe it more in the Great Lakes due to their size.

    Other phenomena also affect water levels, such as the Polar Vortex bringing cold air from the Arctic to the Great Lakes region. Under these conditions, it is cold enough that water freezes, and no evaporation can happen. Other phenomena, such as El Niño and La Niña years, can bring more or less rainfall which also leads to greater fluctuations in water level.

    Climate change also contributes to water level changes. While many of us notice these changes in relation to an increase of extreme weather events — and the resulting rising water levels and flooding — other impacts are more difficult to observe. Some changes are very slow. The timing of the annual highest and lowest water levels in Lakes Erie and Ontario have changed over the past 130 years, now reaching their highest and lowest levels almost a full month sooner than they once did. Other subtle changes include an increase of 0.9oC (1.6oF) in air temperature in the Great Lakes region between the 1901 and 2016. This led to greater water evaporation and greater precipitation, with a 10 per cent increase in rainfall between 1901 and 2015. It is predicted that levels can continue going up in the spring with wetter winters and springs, but levels may be 5 to 15 per cent lower in the fall than the current levels, due to predicted decrease in rainfall in summertime.

    The management of water level in the Great Lakes is complicated and complex. The complexity of these fluctuations in water levels also demonstrates that we all must adapt to new “normals,” which are different from one year to the next. Being prepared and proactive is everyone’s responsibility, even if only to ensure that we can safely enjoy walks and time along our beautiful shorelines.

    The researchers involved with the MEOPAR project are working to raise awareness about the impacts of climate change and how communities can effectively adapt, and increase resilience, to these changes. Follow along with our blog every week (written by researchers Liette Vasseur, Meredith DeCock-Caspell, Bradley May, Pulkit Garg, Sam Gauthier & Jocelyn Baker) to learn more about the project and how you can get involved. You can also visit our website at brocku.ca/unesco-chair or email us at meopar-lincoln@brocku.ca

    Categories: MEOPAR-Lincoln Blog