Definition of a Derivative

The derivative of a function represents the slope of the tangent line to the function.

Tangent Line	Slope of a line
Tangent line Function	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
	*we need 2 points on the line to get the slope

First-Principles Definition of a Derivative

1. Let's start by defining a function $f(x)$.

2. To get the slope of a line we need two points on that line. A tangent intersects the curve at only one point, so we start by picking a second point on the curve, let's call it $x+h$.

3. We have the slope of the secant line between point x, and point $x+h$, we want the slope of the tangent line at point x.

We need to reduce the gap between point x, and point $x+h$.
2. Let's say we want to find the derivative at point x (i.e. the slope of the tangent line at point x).
$f(x)$

4. Let's calculate the slope of the line between point x, and point $x+h$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{f(x+h)-f(x)}{(x+h)-x} \\
& m=\frac{f(x+h)-f(x)}{x+h-x} \\
& m=\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

6. To do this we will take h to be smaller and smaller until it is almost zero. In other words we want to know the limit of the slope function as h approaches zero.

$$
\mathrm{m}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This represents the slope of the tangent line at point x, i.e. the derivative at point x.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

