Calculating Basic Limits

A limit is the value a function would have if the function existed at the desired input value. We say that the function approaches some value as the input approaches some value.

Basic Limits

Sometimes we have to do a little algebra to calculate the limit. There are two types of calculations you will likely see in first-year calculus.

Rational has factoring
These types of calculations occur when the limit
we are taking results in the denominator of the
function becoming zero.
For Example:
$\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x+2}$

If we input $x=-2$ into the equation, we end up with 0 in the denominator.

Since we cannot divide by zero we will first have to factor the numerator.

$$
=\lim _{x \rightarrow-2} \frac{(x+2)(x-1)}{x+2}
$$

Now, we can cross out the $(x+2)$ factors in the numerator and denominator.

$$
\begin{gathered}
=\lim _{x \rightarrow-2} \frac{(x+2)(x-1)}{x+2} \\
=\lim _{x \rightarrow-2} x-1
\end{gathered}
$$

We've eliminated the divide by zero problem so we can now take the limit by plugging in $x=-2$.

$$
=-2-1=-3
$$

Therefore: $\quad \lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x+2}=-3$

Conjugate
 has square roots

These types of calculations occur when the limit we are taking results in a divide by zero situation and the function has a square root.

For Example:

$$
\lim _{x \rightarrow-2} \frac{\sqrt{x+3}-1}{x+2}
$$

If we input $x=-2$ into the equation, we end up with 0 in the denominator.

Since we cannot divide by zero and we cannot factor we will have to multiply by the conjugate of the binomial containing the square root.

A conjugate is when we change the sign between two terms. $(a+b)$ and $(a-b)$ are conjugates.

$$
\begin{array}{l|l}
\lim _{x \rightarrow-2} \frac{\sqrt{x+3}-1}{x+2} \times \frac{\sqrt{x+3}+1}{\sqrt{x+3}+1} & \begin{array}{l}
\text { FOIL the } \\
\text { numerator }
\end{array} \\
=\lim _{x \rightarrow-2} \frac{(\sqrt{x+3})^{2}-1}{(x+2)(\sqrt{x+3}+1)} & \begin{array}{l}
\text { Don't FOIL the } \\
\text { denominator }
\end{array} \\
=\lim _{x \rightarrow-2} \frac{x+3-1}{(x+2)(\sqrt{x+3}+1)} & \\
=\lim _{x \rightarrow-2} \frac{x+2}{(x+2)(\sqrt{x+3}+1)} & \begin{array}{l}
\text { Cancel the } \\
\text { factors }
\end{array} \\
=\lim _{x \rightarrow-2} \frac{1}{\sqrt{x+3}+1} & \\
=\frac{1}{\sqrt{-2+3}+1}=\frac{1}{2} & \text { Take the limit }
\end{array}
$$

Therefore: $\quad \lim _{x \rightarrow-2} \frac{\sqrt{x+3}-1}{x+2}=\frac{1}{2}$

