

PROBLEM GAMBLING AND THE FRN

Angela Dzyundzyak¹, Diane L. Santesso² & Sid J. Segalowitz¹
Brock University¹, University of Winnipeg²

BACKGROUND

The feedback-related negativity (FRN) is a negative deflection in the scalp waveforms observed 200 -350ms following the presentation of the outcome on that trial.¹ Previous research identified the anterior cingulate cortex (ACC) to be the generator of the FRN,¹,² which has been hypothesized to represent the dopaminergic prediction error signal originating in the basal ganglia.³ The FRN has been shown to be larger following negative events (e.g., loss)²,⁴ and unexpected events⁵ as well as being sensitive to participant's engagement in the task⁶, sense of responsibility over the outcome⁵ and personality characteristics.³

Maladaptive gambling behavior has been associated with altered reactivity of the reward network. 9,10 These changes are reflected in the FRN amplitude, which was shown to be attenuated 11 and to occur earlier 12 in pathological gamblers compared to healthy controls.

Our study was conducted to examine how the sensitivity of the FRN to expectation about winning and perceived sense of control over the outcome relates to problem gambling (PG) behavior.

METHODS

Participants (grouped using CPGI¹³):

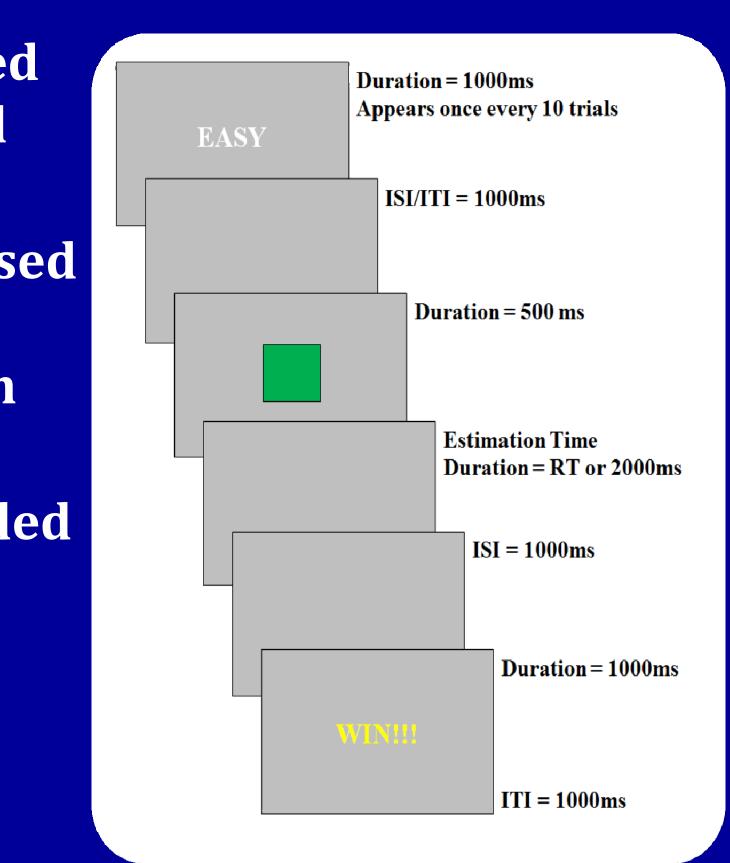
- Not at risk for PG (nPG): n = 22, 13 males (59%)
- 31.1 years (range 19 to 50)
- At risk for PG (PG): n = 19, 15 males (79%)
- 5 low-risk, 6 moderate-risk, 8 high-risk
- 30.1 years (range 19 to 44)

Procedure

- Tasks were counterbalanced
- -128 channel Biosemi sensor net
- Processed using EEGLab (ICA to remove eye and muscle artifact)
- Segmented around feedback (-200ms to +1000ms)

 Statistical Analysis
- -2 (Gambling group) x 2 (Task) x 2 (Expectations) x 2(Valence) x 3(Channel) ANOVA was conducted on the peak FRN amplitude.
- group by task by expectation (F (1,39) = 4.56, p = .039, $p\eta^2 = .105$)
- group by valence by channel (F(2,78) = 3.43, p = .057, $p\eta^2 = .081$)

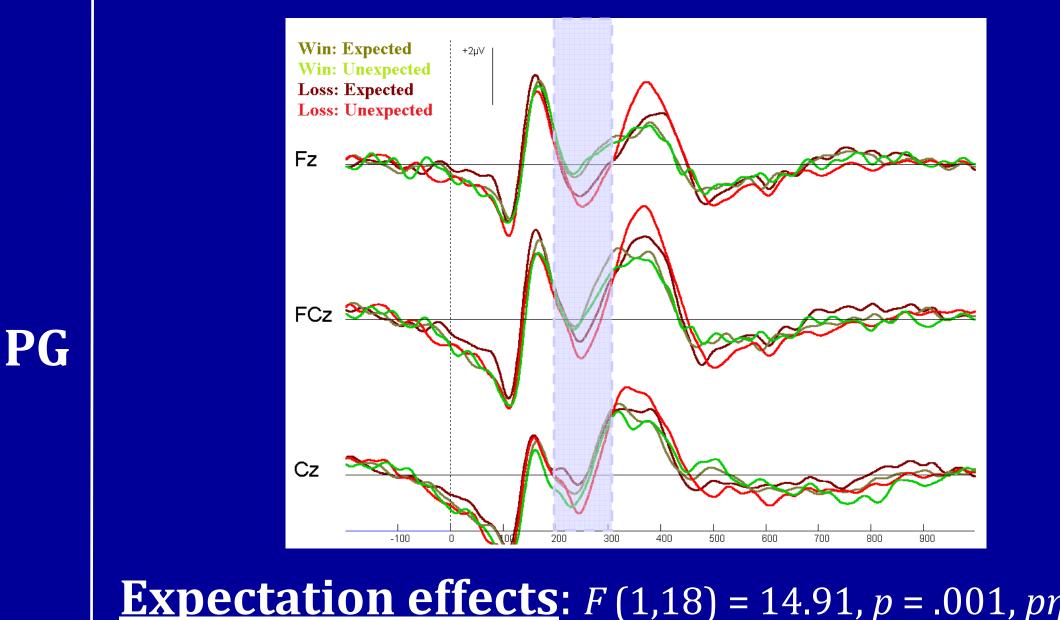
METHODS: TASKS


Gambling (Doors) Task14

- Low perceived sense of control (self-report)
- Probability based expectations
 (consistent with behavioral predictions)
- Outcomes were
 divided based on
 prediction (e.g.,
 unpredicted win =
 unexpected win)

Duration = RT Cue represents number of doors with a reward (1, 2 or 3) ISI = 1000ms Duration = RT ISI = 1000ms TII = 1000ms

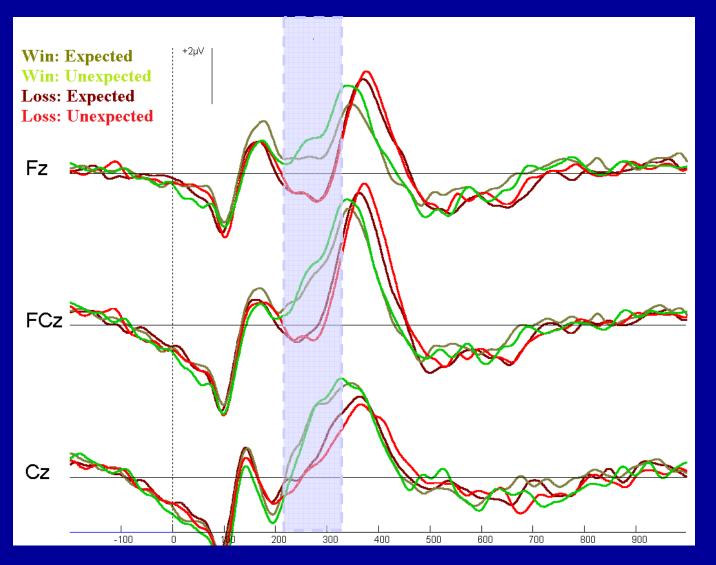
Time Estimation Task¹


- Higher perceived sense of control (self-report)
 Instructions based expectations (consistent with self-report)
- Outcomes divided by expectation based on cues (e.g., win on an easy cue = expected win)

RESULTS

Min: Expected Win: Unexpected Loss: Expected Loss: Unexpected Loss: Unexpe

Expectation effects: F(1,21) = 6.56, p = .018, $p\eta^2 = .238$. No Valence effects: F(1,21) = 0.94, p = .762, $p\eta^2 = .040$.

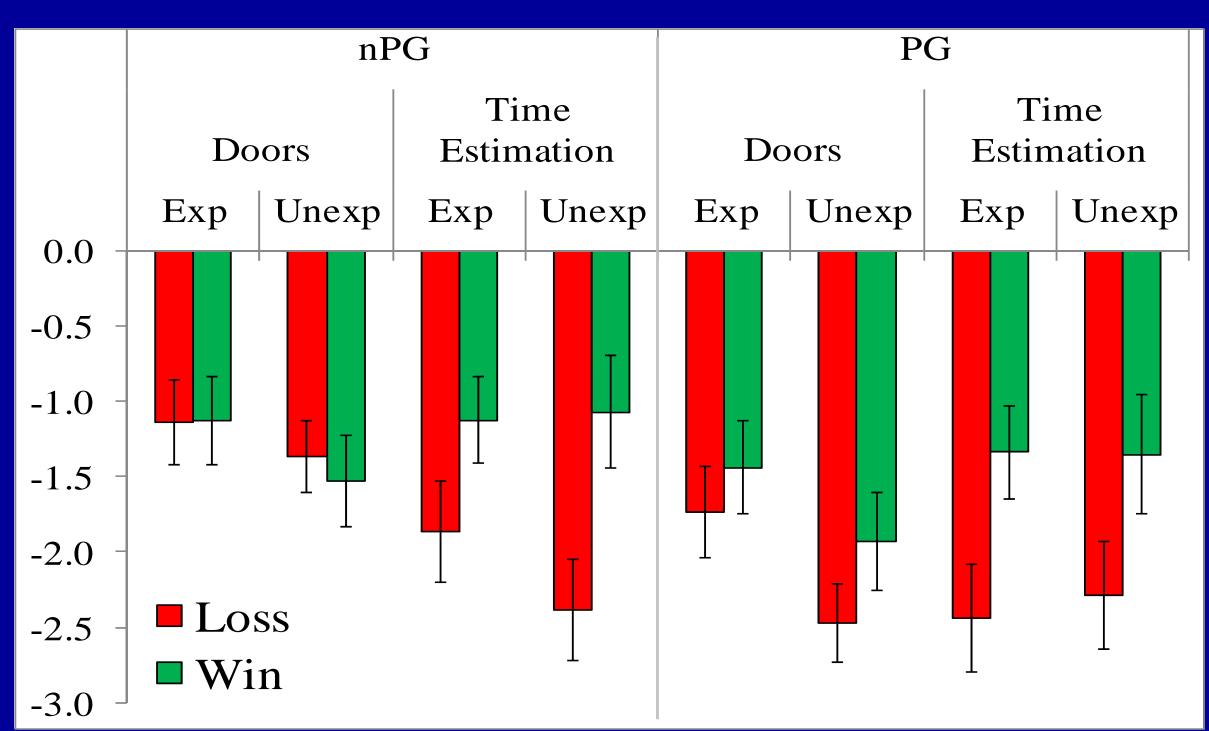

Expectation effects: F(1,18) = 14.91, p = .001, $p\eta^2 = .453$.

Valence effects: F(1,18) = 5.49, p = .031, $p\eta^2 = .234$.

Win: Expected Win: Unexpected Loss: Unexpected Fz FCz Cz

Time Estimation Task

No Expectation effects: F(1,21) = 2.31, p = .144, $p\eta^2 = .099$. **Valence effects**: F(1,21) = 14.76, p = .001, $p\eta^2 = .413$.


No Expectation effects: F(1,18) = 0.24, p = .631, $p\eta^2 = .013$. **Valence effects**: F(1,18) = 8.70, p = .009, $p\eta^2 = .326$.

Follow up analysis showed that individuals at-risk for PG were more sensitive to the valence of the outcomes in the gambling task compared to nPG group.

Poster presented at the 54th Annual Meeting for the Society for Psychophysiological Research, Atlanta, GA, September 2014. For further information, contact SJS (ssegalowitz@brocku.ca).

RESULTS (cont'd)

Figure 7. Peak FRN amplitude averaged across midline channels and broken down by group, task and expectation.

Two repeated measures ANOVAs (one for losses and one for wins) were conducted to examine the task by valence interaction observed in the mixed ANOVA analysis. The data was also broken down by group. Expectation and valence effects in the PG group were driven by changes in FRN following wins, rather than losses as was observed in the nPG group (Figure 7).

CONCLUSIONS

- Individuals at risk for PG showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes
- -Failure to replicate previous research examining severe pathological gamblers reporting a general attenuation of the FRN, suggesting that a general reduction in the FRN can be observed only after behaviour becomes clinically maladaptive.

REFERENCES

- 1. Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Journal of Cognitive Neuroscience, 9(6), 788–98
- 2. Gehring, W. J., & Willoughby, A. R. (2002). Science, 295(5563), 2279-82.
- 3. Holroyd, C. B., & Coles, M. G. H. (2002). *Psychological Review, 109*(4), 679–709.
- 4. Yeung, N. & Sanfey, A. (2004). *Journal of Neuroscience, 24*(28), 6258-6265 5. Bismark, A. W., Hajcak, G., Whitworth, N. M., & Allen, J. J. B. (2013). *Psychophysiology, 3*
- 5. Bismark, A. W., Hajcak, G., Whitworth, N. M., & Allen, J. J. B. (2013). *Psychophysiology, 50*(2), 125–33.
- 6. Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). *Cerebral Cortex, 15*(5), 535–544.
- 7. Li, P., Han, C., Lei, Y., Holroyd, C. B., & Li, H. (2010). *Psychophysiology, 48*(8), 1129–1133. S 8. antesso, D. L., & Segalowitz, S. J. (2009). *Psychophysiology, 46*(1), 143–52.
- 9. Chase, H.W., & Clark, L. (2010). *The Journal of Neuroscience, 30*(18), 6180-6187.
- 10.Meidl, S.F., Peters, J., & Büchel, C. (2012). *Archives of General Psychiatry, 69*(2), 177-186. 11.Torres, A., Catena, A., Candido, A., Maldonado, A., Megias, A., & Perakes, J.C. (2013). *Frontiers in*
- *Psychology, 4*(122), 1-14.
 12.Oberg, S. A. K., Christie, G. J., & Tata, M. S. (2011). *Neuropsychologia, 49*(13), 3768–3775.
- 13.Ferris, J., & Wynne, H. (2001). The Canadian Problem Gambling Index: Final report. Ottawa, ON: Canadian Centre on Substance Abuse.
- 14.Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). Psychophysiology, 44(6), 905–912.