CARDIAC AUTONOMIC REGULATION AND COGNITIVE CONTROL IN OLDER AND YOUNGER ADULTS
Lesley J. Capuana, Jane Dywan, Raechelle M. Gibson, Sidney J. Segalowitz
Department of Psychology, Brock University, St. Catharines, Ontario, Canada

BACKGROUND
- Respiratory sinus arrhythmia (RSA) is an index of cardiac autonomic control and should be advantageous for cognitive control performance.
- Older adults demonstrate declines in both cognitive and cardiac autonomic control, but little is known about the link between them.
- Data has shown that RSA does not relate to cognitive control for all tasks and can be opposite of the direction expected.
- We proposed that relations between RSA and cognitive control would be more evident when the task depended on the more metabolically-costly proactive rather than reactive cognitive control strategies.

PRESENT STUDY
We recorded pre-task RSA in older and younger adults and examined its relationship with accuracy on a Stroop paradigm that involved responding to lures designed to elicit either a "proactive" or "reactive" response strategy.

- **Basic Task**: "accept" congruents; "reject" incongruent lures (e.g., red/RED)
- **Memory Task**: "accept" congruents; "reject" incongruent lures and memory contingency lures, i.e., a predefined congruent item (e.g., green/GREEN)
- **Super Memory Task**: "accept" congruents; "reject" incongruent lures and super memory contingency lures, i.e., a predefined congruent of a particular case-size (e.g., GREEN but not green)

Incongruent Lures
- **Cannot** anticipate by maintaining cue
- **Should elicit a reactive strategy** based on late correction

Memory & Super Memory Contingency Lures
- **Can** anticipate by maintaining cue
- **Should elicit a proactive strategy** based on early selection

Specific Hypotheses:
- Proactive control will lead to faster and more accurate responses for memory and super memory contingency lures.
- Older high pre-RSA task will relate to better performance on proactive control trials (i.e., memory & super memory contingency lures), especially among older adults.

METHODS
Participants
- 23 younger adults (18 women, M = 20.0 years)
- 22 older adults (17 women, M = 68.0 years)

Procedure
- Participants completed 3 Stroop tasks (Basic, Memory, Super Memory)
- Each version was completed twice
 - **Standard Phase**
 - **Incentive Phase**
 - Received 30 points for correct responses
 - Lost 1.50 points for errors and lost points for responding too slowly
 - Points converted to money ($5 - $15) on completion of task

Participants completed Stroop tasks in identical order (Basic, Memory, Super Memory), with incentive phase always following standard phase.

RESULTS
- **Incongruent Lure-Accuracy**
 - Task (2) x Phase (2) x Group (2)
 - Accuracy during both Standard and Incentive Phases
 - Older Adults showed higher accuracy for Incentive Phase compared to Standard Phase
 - Younger Adults showed lower accuracy in Incentive Phase compared to Standard Phase

- **Memory vs. Super Memory Contingency Lure Accuracy**
 - Task (2) x Phase (2) x Group (2)
 - Younger Adults showed higher accuracy in both Standard and Incentive Phases
 - Older Adults showed lower accuracy in Incentive Phase compared to Standard Phase

CONCLUSIONS
- Lures that could benefit from the use of a proactive strategy (i.e., memory & super memory contingency lures) elicited faster and more accurate responses than those more dependent on a reactive strategy (i.e., incongruent lures).
- Higher levels of pre-task RSA were most strongly and consistently associated with responses involving proactive control (i.e., memory & super-memory contingency lures), especially for older adults.
- These findings support a model of neurovisceral integration that links cardiac autonomic control and cognitive performance.

- They also indicate that cardiac autonomic control is most relevant when performance relies on the use of proactive control, i.e., a cognitive control strategy that involves the sustained, active maintenance of goal representations over time and, as a result, represents a more resource-demanding and metabolically-costly operation.

References

Acknowledgements
Thanks to James Desjardins and Allison Flynn for their invaluable assistance.

Poster presented at the 54th Annual Meeting for the Society for Physiological Research, Atlanta, GA, September 2014. Supported by NSERC (to J. Dywan). Address correspondence to lesley.capuana@gmail.com