Autonomic Arousal and Inhibitory Control in Aging
Lesley J. Capuana, William J. Tays, Jane Dywan, Sidney J. Segalowitz
Brock University, St. Catharines, Ontario CANADA

Purpose
To examine whether age affects the degree to which autonomic regulatory activity is related to response control and error-related ERPs during a complex Go/NoGo task involving three levels of working memory (WM) load.

Method (continued)

Revised Working Memory Inhibitory Control Task
• WM load varies (2, 4, or 6 letters)
• Participant memorizes letters associated with each trail
• Series of single letter probes follow
• Go response → probe does not match load letters
• NoGo (withhold) → probe does match load letters

Electrophysiological Recordings
• 128-Channel BioSemi System with an averaged mastoids reference and impedance < 50 kΩ
• Data filtered offline at 1 – 30 Hz
• Regression-based correction for ocular artifact

Electrocardiogram Recordings
• Recorded using 2 chest electrodes
• RSA calculated offline from ECG by extracting high frequency oscillations associated with normal respiration
• RPP was calculated (Heart Rate x Systolic BP/ 100)

Results (continued)
• Within each group, error rates increased and ERN/Pe amplitudes decreased across WM loads.
• Older adults responded more cautiously than younger adults, resulting in fewer NoGo errors, except on catch trials.
• Within the younger group, higher baseline RSA was associated with a larger Pe amplitude in response to catch-trial errors (stats).
• Within the older group, higher baseline RPP was associated with a greater error rate on the catch NoGo trials (stats).

Conclusions
• Autonomic control was not related to WM load but was associated with behavioural and electrophysical responses to unexpected catch trials.
 • In the younger group, those with higher parasympathetic control of cardiac function (higher RSA) at baseline produced a larger electrocortical response to having made a catch-trial error during test, which might be considered an adaptive response.
 • In the older group, higher sympathetic predominance (higher RPP) at baseline, indicating poorer parasympathetic modulation of cardiac function, was associated with a higher rate of catch-trial errors, suggesting poorer response control.

Results indicate that links between cardiac control, electrocortical activity, and performance monitoring may vary as a function of age and provide support for the utility of a neurovisceral integration perspective in our attempts to understand age-related cognitive change.

References

Acknowledgements
Funded by the Natural Sciences and Engineering Research Council of Canada. Thanks to James Desjardins, Allison Flynn, Sarah Tisi, and Liu Liu for their invaluable assistance.
Correspondence: jdywan@brocku.ca
Presented at the 49th Annual Meeting of the Society for Psychophysiological Research, October 21 – 25, 2009. Berlin, Germany