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1 Introduction

Recently, a number of alternative estimators to GMM have been proposed. Hansen, Heaton and Yaron (1996)

suggested the continuous updated estimator (CUE) which shares the same objective function as GMM but with

a weighting matrix that depends on the parameters of interest. The empirical likelihood (EL) (see Qin and

Lawless (1994)) and the exponential tilting (ET) estimators (see Kitamura and Stutzer (1997)) have also been

proposed. Newey and Smith (2004) showed (in an i.i.d. setting) that, although estimators based on the GMM,

EL, ET or that are CUE have the same asymptotic distribution, they have different higher order asymptotic

properties. Amongst their findings it is shown that the expression for the second order asymptotic bias of GEL

has fewer components than the one for GMM (with EL having the fewest). Anatolyev (2005) extended the

Newey and Smith setting to allow for serial correlation and showed that smoothing the moment conditions

reduces bias even further. These alternative estimators are special cases of the generalized empirical likelihood

(GEL) class considered by Smith (1997).

An important aspect of the validation of an estimation strategy is the stability of the parameters of interest

and the respective objective function used. In particular, GMM and GEL suppose that the parameters of

interest and moment restrictions are stable across time. To our knowledge, structural change tests based on

GEL have not yet been proposed. In view of the importance of detecting structural changes and given the recent

developments of GEL methods as an alternative to GMM, it appears important to study structural change tests

for these methods of estimation.

In that respect, a class of partial-sample GEL (PS-GEL) estimators is introduced and we establish the weak

convergence of the resulting parameter vector to a function of Brownian motions. We also show that the PS-

GEL estimators of the Lagrange multiplier parameters also weakly converge to a function of Brownian motions

uncorrelated to the asymptotic distribution of the vector of parameters. These asymptotic distributions are

derived under the null hypothesis of stability and general alternatives of structural change (see Sowell, 1996) for

an unknown breakpoint. These results allow us to derive the asymptotic distributions of structural change tests

in the GEL context. We consider cases of structural change which can occur in the parameters of interest or

in the overidentifying restrictions used to estimate these parameters. As in Andrews (1993), we study standard

Wald, LM anf LR types test statistics for parameters instability in cases of pure structural change test when

the entire parameter vector is subject to structural change and partial structural change where only a subset

of the parameter vector is subject to structural change. We show that these statistics when computed with

smoothed moment conditions follow the same asymptotic distribution than in the GMM context (Andrews,

1993). Second, we examine tests for the stability of overidentifying restrictions. An equivalent test statistics to

Hall and Sen’s (1999) statistics in the GMM context is adapted to the GEL for smoothed moment conditions.

Two new tests specific to the GEL framework are proposed to detect instability of overidentifying restrictions.
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We show that these new statistics have the same asymptotic distribution at first order than the one derived by

Hall and Sen (1999).

Recently, weak identification has received a large amount of attention (Stock and Wright, 2000). When

the presence of weak instruments is suspected, robust structural change tests to weak identification need to

be implemented. This paper proposes test statistics of structural change in the context of weakly identified or

completely unidentified cases for the GEL framework. The first one is based on a renormalized criterion function

of GEL evaluated at a restricted PS estimator. The second is asymptotically equivalent to the first and is based

on the Lagrange multiplier of the restricted partial-sample estimator. The second group of tests includes a test

statistic derived from a GEL criterion that uses moment conditions corresponding to the first-order conditions

of the restricted PS-GEL estimator whose dimension is identical to the number of parameters and a statistic

based on the corresponding Lagrange multiplier. Under weak identification or completely unidentified case,

these test statistics are not asymptotically pivotal. As in Caner (2007), we show that their limits are bounded

by a distribution which is nuisance parameter free and robust to identification problems. For the first group, the

asymptotic bound is a function of the number of moment conditions while for the second group, the asymptotic

bound depends on the number of parameters. The derivation of the bound under general local alternatives

shows that the first group can have power against instability of parameter values or overidentifying restrictions

while the second group is specifically designed to detect parameters instability.

The main findings of the simulation study are summarized as follows. We find that the average and expo-

nential versions of the Lagrange multiplier-based test, one of the new test proposed, has very good rejection

frequencies under the null hypothesis. Further this newly proposed test has the highest power. Given that

this test statistic targets structural changes in the overidentifying restrictions and that standard tests for a

structural change in the parameter vector (e.g., Wald and LR tests) have lower power, it appears that testing

for an unknown change in the overidentifying restrictions is important in empirical applications.

The paper is organized as follows. Section 2 presents formally the full-sample and partial-sample GMM and

GEL estimators. Section 3 presents the test statistics proposed and their respective asymptotic distributions.

The simulation results are in Section 4 while the proofs are in the Appendix.

2 Full and partial-samples GMM and GEL estimators

To establish the asymptotic distribution theory of tests for structural change we need to elaborate on the

specification of the parameter vector in our generic setup. We will consider parametric models indexed by

parameters (β, δ) where β ∈ B, with B ⊂ Rr and δ ∈ ∆ ⊂ Rν . Following Andrews (1993) we make a distinction

between pure structural change when no subvector δ appears and the entire parameter vector is subject to

structural change under the alternative and partial structural change which corresponds to cases where only a
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subvector β is subject to structural change under the alternative. The generic null can be written as follows

(the S stands for stability):

HS
0 : βt = β0 ∀t = 1, . . . , T. (1)

The tests considered assume as alternative that at some point in the sample there is a single structural

break, like for instance:

βt =

{
β1(s) t = 1, ..., [sT ]

β2(s) t = [sT ] + 1, ..., T

where s determines the fraction of the sample before and after the assumed breakpoint and [.] denotes the

greatest integer function. The separation [Ts] represents a possible breakpoint which is governed by an unknown

parameter s. Hence, we will consider a setup with a parameter vector which encompasses any kind of partial

or pure structural change involving a single breakpoint. In particular, we consider a p dimensional parameter

vector θ = (β′1, β
′
2, δ

′)′ where β1 and β2 ∈ B ⊂ Rr and θ ∈ Θ = B × B × ∆ ⊂ Rp where p = 2r + ν. The

parameters β1 and β2 apply to the samples before and after the presumed breakpoint and the null implies that:

HS
0 : β1 = β2 = β0.. (2)

Thus, under the null, θ0 = (β′0, β
′
0, δ

′
0)
′.

We will formulate all of our models in terms of θ. Special cases could be considered whenever restrictions are

imposed in the general parametric formulation. One such restriction would be that θ0 = (β′0, β
′
0)
′, which would

correspond to the null of a pure structural change hypothesis. Once we have defined the moment conditions

we will also translate this into overidentifying restrictions and relate it to structural change tests, following the

analysis of Sowell (1996b) and of Hall and Sen (1999).

2.1 Definitions

We assume a triangular array of random variables {xTt : 1 ≤ t ≤ T, T ≥ 1}. Triangular arrays of random

variables are required to study local power of the structural change tests. However, to simplify the notation xTt

is denoted xt hereafter. Suppose a q × 1 vector function of data g(xt, β, δ) which depends on some unknown

r + ν-vector of parameters (β′, δ′)′ ∈ B ×∆ ⊂ Rr+ν and that in the population their expected value is 0. That

is,

E[g(xt, β0, δ0)] = 0.

Definition 2.1. The full-sample General Method of Moments estimator {β̃T , δ̃T } is a sequence of random

vectors such that:
(
β̃′T , δ̃′T

)′
= arg min

(β,δ)∈B×∆
gT (β, δ)′ŴT gT (β, δ)
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where ŴT is a random positive definite symmetric q× q matrix and gT (β, δ) = 1
T

∑T
t=1 g(xt, β, δ). The optimal

weighting matrix is defined to be the inverse of the covariance matrix of the moment conditions, WT = Ω−1
T

where ΩT is a consistent estimator of

Ω = lim
T→∞

V ar

(
1√
T

T∑
t=1

g(xt, β0, δ0)

)
.

The optimal weighting matrix can be estimated consistently using methods developed by Gallant (1987),

Andrews and Monahan (1992) and Newey and West (1994), among several others. We call θ̃T =
(
β̃′T , β̃′T , δ̃′T

)′

the full sample estimator of θ.

Several tests for structural change involve partial-sample GMM estimators defined by Andrews (1993).

We consider two subsamples, the first is based on observations t = 1, . . . , [Ts] and the second covers t =

[Ts] + 1, . . . , T where s ∈ S ⊂ (0, 1). The partial-sample GMM estimators based on the first and the second

subsamples are formally defined as:

Definition 2.2. A partial-sample General Method of Moments estimator {θ̂T (s)} is a sequence of random

vectors such that:

θ̂T (s) = arg min
θ∈Θ

gT (θ, s)′ŴT (s)gT (θ, s)

for all s ∈ S. Define gt(θ, s) = (g(xt, β1, δ)′, 0′)
′ ∈ R2q×1 for t = [Ts]+1, . . . , T and gt(θ, s) = (g(xt, β2, δ)′, 0′)

′ ∈
R2q×1 for t = [Ts] + 1, . . . , T such that

gT (θ, s) =
1
T

T∑
t=1

gt(θ, s) =
1
T

[Ts]∑
t=1

[
g(xt, β1, δ)

0

]
+

1
T

T∑

t=[Ts]+1

[
0

g(xt, β2, δ)

]

and ŴT (s) is a random positive definite symmetric 2q × 2q matrix.

According to this definition, θ̂T (s) =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′

)′
is a 2r + ν-vector with an estimator β̂1T (s)

that uses the first subsample t = 1, . . . , [Ts], an estimator β̂2T (s) that uses the second subsample t = [Ts] +

1, . . . , T and an estimator δ̂T (s) that uses the entire sample.

The partial-sample optimal weighting matrix is defined as the inverse of Ω(s) where

Ω(s) = lim
T→∞

V ar

(
1√
T

[ ∑[Ts]
t=1 g(xt, β0, δ0)∑T

t=[Ts]+1 g(xt, β0, δ0)

])

which under the null (2) is asymptotically equal to

Ω(s) =

[
sΩ 0

0 (1− s)Ω

]
.

To characterize the asymptotic distribution we define the following matrices:

Gβ = lim
T→∞

1
T

T∑
t=1

E∂g(xt, β0, δ0)/∂β′ ∈ Rq×r,
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Gδ = lim
T→∞

1
T

T∑
t=1

E∂g(xt, β0, δ0)/∂δ′ ∈ Rq×ν ,

G(s) =

[
sGβ 0 sGδ

0 (1− s)Gβ (1− s)Gδ

]
∈ R2q×(2r+ν).

In the GEL setting, the parameter vector is augmented by a vector of auxiliary parameters λ where each

element of this vector is associated with an element of the smoothed moment conditions gtT (θ) to be defined

below. The generic null hypothesis of no structural change for this vector of auxiliary parameters is written as

follows:

HS
0 : λt = λ0 = 0 ∀t = 1, . . . , T. (3)

As for the parameter vector β, the tests we will consider assume as alternative that at some point in the

sample there is a single structural break, namely:

λt =

{
λ1(s) t = 1, ..., [sT ]

λ2(s) t = [sT ] + 1, ..., T.

Thus, under the null HS
0 = λ1 = λ2 = λ0 = 0. We will show later that a structural change in λ is associated

with instability in the overidentifying restrictions.

As in the GMM context an adjustment for the dynamic structure of g(xt, θ) is also required in the GEL

context ( see Kitamura and Stutzer (1997), Smith (2000), Smith (2004) and Guggenberger and Smith (2008)).

The adjustment consists of smoothing the original moment conditions g(xt, θ). Defining the smoothed moment

conditions as

gtT (β, δ) =
1

MT

t−1∑

m=t−T

k

(
m

MT

)
g (xTt−m, β, δ)

for t = 1, . . . , T and MT is a bandwidth parameter, k(·) a kernel function and we define where kj =
∫∞
−∞ k(a)jda.

The GEL criteria is then given by:
T∑

t=1

[ρ(kλ′gtT (θ))− ρ0]
T

where k = k1
k2

(see Smith (2004)).

We now formally define the restricted Generalized Empirical Likelihood (GEL) estimator using the entire

sample θ̃T =
(
β̃′T , δ̃′T

)′
.

Definition 2.3. Let ρ(φ) be a function of a scalar φ that is concave on its domain, an open interval Φ that

contains 0. Also, let Λ̃T (β, δ) = {λ : kλ′gtT (β, δ) ∈ Φ, t = 1, . . . , T} with k = k1
k2

. Then, the full-sample GEL

estimator {θ̃T } is a sequence of random vectors such that:

(
β̃′T , δ̃′T

)′
= arg min

(β,δ)∈B×∆
sup

λ∈Λ̃T (β,δ)

T∑
t=1

[ρ (kλ′gtT (β, δ))− ρ0]
T
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where ρj() = ∂jρ()/∂φj and ρj = ρj(0) for j = 0, 1, 2, . . . .

The criteria is normalized so that ρ1 = ρ2 = −1 (see Smith (2004)). As mentioned earlier, the GEL estimator

admits a number of special cases recently proposed in the econometrics literature. The CUE of Hansen, Heaton

and Yaron (1996) corresponds to the following quadratic function ρ(φ) = −(1 + φ)2/2. The EL estimator (Qin

and Lawless, 1994) is a GEL estimator with ρ(φ) = ln(1− φ). The ET estimator (Kitamura and Stutzer, 1997)

is obtained with ρ(φ) = − exp(φ).

More precisely, the GEL estimator is obtained as the solution to a saddle point problem. Firstly, the criterion

is maximized for given vector (β, δ). Thus,

λ̃T (β, δ) = arg sup
λ∈Λ̃(β,δ)

T∑
t=1

[ρ (kλ′gtT (β, δ))− ρ0]
T

.

Secondly, the GEL estimator
(
β̃′T , δ̃′T

)′
is given by the following minimization problem:

(
β̃′T , δ̃′T

)′
= arg min

(β,δ)∈B×∆

T∑
t=1

[
ρ

(
kλ̃T (β, δ)′ gtT (β, δ)

)
− ρ0

]

T
.

From now on, following Kitamura and Stutzer (1997) and Guggenberger and Smith (2008) we focus on the

truncated kernel defined by

k(x) = 1 if |x| ≤ 1 and k(x) = 0 otherwise

to obtain the following smoothed moment conditions1

gtT (β, δ) =
1

2KT + 1

KT∑

j=−KT

g(xt−j , β, δ)

where KT is related to the bandwidth parameter MT (see section 4). To handle the endpoints in the smoothing

we use the approach of Smith (2004) and Guggenberger and Smith (2008) which sets

gtT (β, δ) =
1

2KT + 1

min{t−1,KT }∑

j=max{t−T,−KT }
g(xt−j , β, δ).

We can easily show for this kernel that k = k1
k2

= 1. A consistent estimator of the long run covariance matrix

is then given by:

Ω̃T =
2KT + 1

T

T∑
t=1

gtT (β̃, δ̃)gtT (β̃T , δ̃T )′.

1We focus on the truncated kernel to simplify the notation and the proofs. Results derived in the following also holds for the

class of kernels K1 considered in Andrews (1991). Moreover Anatolyev (2005) establishes that among positive kernels, only the

uniform truncated kernel proposed by Kitamura and Stutzer (1997) removes the bias component involved by the third moments of

the moment conditions.
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The weighting matrix thus obtained using this type of kernel is similar to the one obtained with the Bartlett

kernel estimator of the long run covariance matrix of the moment conditions (see Smith (2004)). Define also

the derivatives of the smoothed moment conditions as:

GtT (β, δ) =
1

2KT + 1

KT∑

j=−KT

∂g(xt−j , β, δ)
∂ (β′, δ′)

.

Now consider a possible breakpoint [Ts]. Define the vector of auxiliary parameters λ(s) = (λ′1, λ
′
2)
′ where

λ1 is the vector of the auxiliary parameters for the first part of the sample (e.g., t = 1, . . . , [Ts]) and λ2 for the

second part of the sample (t = [Ts] + 1, . . . , T ). The partial-sample GEL estimators for s ∈ S based on the first

and the second subsamples are formally defined as:

Definition 2.4. Let ρ(φ) be a function of a scalar φ that is concave on its domain, an open interval Φ that

contains 0. Also, let Λ̂T (θ, s) = {λ(s) = (λ′1, λ
′
2)
′ : λ(s)′gtT (θ, s) ∈ Φ, t = 1, . . . , T} for all s ∈ S, where

gtT (θ, s) = (gtT (β1, δ)′, 0′)
′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) = (0′, gtT (β2, δ)′)

′ ∈ R2q×1 for t =

[Ts] + 1, . . . , T with λ(s) = (λ′1, λ
′
2)
′ ∈ R2q×1. A partial-sample Generalized Empirical Likelihood (PS-GEL)

estimator {θ̂T (s)} is a sequence of random vectors such that:

θ̂T (s) = arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

T∑
t=1

[ρ(λ(s)′gtT (θ, s))− ρ0]
T

= arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)




[Ts]∑
t=1

[ρ(λ′1gtT (β1, δ))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(λ′2gtT (β2, δ))− ρ0]
T


 .

To be more precise, the first-order conditions corresponding to the Lagrange multiplier λ are obtained from

the maximization of the partial-sample GEL criterion for a given β1, β2, δ. Thus for a given s

λ̂1T (β1, δ, s) = arg sup
λ1∈Λ̂1T (β1,δ,s)

[Ts]∑
t=1

[ρ(kλ′1gtT (β1, δ))− ρ0]
T

,

λ̂2T (β2, δ, s) = arg sup
λ2∈Λ̂2T (β2,δ,s)

T∑

t=[Ts]+1

[ρ(kλ′2gtT (β2, δ))− ρ0]
T

with Λ̂1T (β1, δ, s) = {λ1 : kλ′1gtT (β1, δ) ∈ Φ, t = 1, . . . , [Ts]} and Λ̂2T (β2, δ, s) = {λ2 : kλ′2gtT (β2, δ) ∈ Φ, t =

[Ts] + 1, . . . , T}. The corresponding first-order conditions are given by:

1
T

[Ts]∑
t=1

ρ1

(
λ̂1T (β1, δ, s)′gtT (β1, δ)

)
gtT (β1, δ) = 0

1
T

T∑

t=[Ts]+1

ρ1

(
λ̂2T (β2, δ, s)′gtT (β1, δ)

)
gtT (β2, δ) = 0.

The partial-sample GEL estimators θ̂T (s) =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′

)′
are the minimizer of the partial-

sample GEL criterion. By writing λ̂1T (s) = λ̂1T (β̂1T (s), δ̂T (s), s) and λ̂2T (s) = λ̂2T (β̂2T (s), δ̂T (s), s), the

8



corresponding first-order conditions are:

1
T

[Ts]∑
t=1

ρ1

(
λ̂1T (s)′gtT (β̂1T (s), δ̂T (s))

)
Gβ

tT (β̂1T (s), δ̂T ))′λ̂1T (s) = 0,

1
T

T∑

t=[Ts]+1

ρ1

(
λ̂2T (s)′gtT (β̂2T (s), δ̂T (s))

)
Gβ

tT (β̂2T (s), δ̂T (s))′λ̂2T (s) = 0,

and writing λ̂T (θ̂T (s), s) = λ̂T (s) , the first-order conditions for δ are

1
T

T∑
t=1

ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
Gδ

tT (θ̂T (s), s)′λ̂T (s) = 0.

The next Theorem shows the convergence in probability of {θ̂T (s), λ̂T (s), T ≥ 1} and the corresponding rate

of convergence.

Theorem 2.1. If Assumptions 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7 are satisfied then for every sequence of PS-GEL es-

timators {θ̂T (s), λ̂T (s), T ≥ 1}, sups∈S

∥∥∥θ̂T (s)− θ0

∥∥∥ p→ 0 and sups∈S

∥∥∥λ̂T (s)
∥∥∥ p→ 0. Moreover sups∈S

∥∥∥λ̂T (s)
∥∥∥ =

Op

[(
T/(2KT + 1)2

)−1/2
]

and sups∈S

∥∥∥ 1
T

∑T
t=1 gtT (θ̂T (s), s)

∥∥∥ = Op(T−1/2).

Proof: See the Appendix.

Now we define the estimator

Ω̂T (s) =

[
sΩ̂1T (s) 0

0 (1− s)Ω̂2T (s)

]
,

with

Ω̂1T (s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β̂1T (s), δ̂T (s))gtT (β̂1T (s), δ̂T (s))′

and

Ω̂2T (s) =
2KT + 1
T − [Ts]

T∑

t=[Ts]+1

gtT (β̂2T (s), δ̂T (s))gtT (β̂2T (s), δ̂T (s))′.

We denote {B(s) : s ∈ [0, 1]} as q-dimensional vectors of mutually independent Brownian motions on [0, 1]

and define

J(s) =

[
Ω1/2B(s)

Ω1/2(B(1)−B(s))

]

where B(π) is a q-dimensional vector of standard Brownian motions.

The next Theorem shows the weak convergence of {θ̂T (s), λ̂T (s), T ≥ 1}.
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Theorem 2.2. Under Assumptions 6.1 to 6.12 and the null of no structural change, every sequence of PS-GEL

estimators {θ̂T (·), λ̂T (·), T ≥ 1} satisfies

√
T

(
θ̂T (·)− θ0

)
⇒ (

G(·)′Ω(·)−1G(·))−1
G(·)′Ω(·)−1J(·),

√
T

2KT + 1
λ̂T (·) ⇒

(
Ω(·)−1 − Ω(·)−1

(
G(·)′Ω(·)−1G(·))−1

G(·)′Ω(·)−1
)

J(·)

as a process indexed by s ∈ S, where S has closure in (0,1) and the sequence GEL estimators θ̂T (·) and the

auxiliary sequence parameter estimator λ̂T (·) are asymptotically uncorrelated.

Proof: See the Appendix.

The purpose of the next subsection is to refine the null hypothesis of no structural change. Such a refinement

will enable us to construct various tests for structural change in the spirit of Sowell (1996a) and Hall and Sen

(1999). Next, we present tests for parameter constancy, tests for stability of overidentifying restrictions and

finally tests that are robust to some form of unidentification.

2.2 Refining the null hypothesis

The moment conditions for the full sample under the null can be written as: Egt(β0, δ0) = 0, ∀t = 1, . . . , T.

Following Sowell (1996a), we can project the moment conditions on the subspace identifying the parameters and

the subspace of overidentifying restrictions. In particular, considering the (standardized) moment conditions

for the full-sample GMM estimator, such a decomposition corresponds to:

Ω−1/2Egt(β0, δ0) = PGΩ−1/2Egt(β0, δ0) + (Iq − PG)Ω−1/2Egt(β0, δ0),

where PG = Ω−1/2G
[
G′Ω−1G

]−1
G′Ω−1/2. The first term is the projection identifying the parameter vector

and the second term is the projection for the overidentifying restrictions. The projection argument enables us

to refine (split) the null hypothesis (2), HS
0 . For instance, following Hall and Sen (1999) we can consider the

null, HI
0 (s), for the case of a single breakpoint in β by the projection on the space corresponding to Gβ , which

separates the identifying restrictions across the two subsamples:

HI
0 (s) =

{
PGβΩ−1/2E[gt(β0, δ0)] = 0 ∀t = 1, . . . , [Ts]

PGβΩ−1/2E[gt(β0, δ0)] = 0 ∀t = [Ts] + 1, . . . , T.

Moreover, the overidentifying restrictions are stable if they hold before and after the breakpoint. This is

formally stated as HO
0 (s) = HO1

0 (s) ∩HO2
0 (s) with:

HO1
0 (s) : (Iq − PG)Ω−1/2E[gt(β0, δ0)] = 0 ∀t = 1, . . . , [Ts]

HO2
0 (s) : (Iq − PG)Ω−1/2E[gt(β0, δ0)] = 0 ∀t = [Ts] + 1, . . . , T.
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We can then write the null hypothesis as HS
0 = HI

0 (s) & HO
0 (s). The projection reveals that instability

must be a result of a violation of at least one of the three hypotheses: HI
0 (s),HO1

0 (s) or HO2
0 (s). Note that

because the overidentifying restrictions are not used in estimation we can test their stability in each subsample.

In contrast, because the identifying restrictions are used in estimation we can always find parameter values that

satisfy them in each subsample. Hence we can not split HI
0 . Various tests can be constructed with local power

properties against any particular one of these three null hypotheses (and typically no power against the others).

To elaborate further on this we consider a sequence of local alternatives based on the moment conditions:

Assumption 2.1. A sequence of local alternatives is specified as:

Egt(β0, δ0) = h(η, τ,
t

T
)/
√

T (4)

where h(η, τ, r), for r ∈ [0, 1], is a q-dimensional function. The parameter τ locates structural changes as a

fraction of the sample size and the vector η defines the local alternatives2. These local alternatives are chosen

to show that the structural change tests presented in this paper have non trivial power against a large class of

alternatives. Also, our asymptotic results can be compared with Sowell’s results for the GMM framework.

Now define

J∗(s) =

[
Ω1/2B(s)−H(s)

Ω1/2(B(1)−B(s))− (H(1)−H(s))

]

where H(s) =
∫ s

0
h(η, τ, r)dr.

Theorem 2.3. Under Assumptions 6.1 to 6.12 and the alternative (4), every sequence of PS-GEL estimators

{θ̂T (·), λ̂T (·), T ≥ 1} satisfies
√

T
(
θ̂T (·)− θ0

)
⇒ (

G(·)′Ω(·)−1G(·))−1
G(·)′Ω(·)−1J∗(·),

√
T

2KT + 1
λ̂T (·) ⇒

(
Ω(·)−1 − Ω(·)−1

(
G(·)′Ω(·)−1G(·))−1

G(·)′Ω(·)−1
)

J∗(·)

as a process indexed by s ∈ S, where S has closure in (0,1).

Proof: See the Appendix.

3 Tests for structural change

3.1 Tests for parameter constancy

In this section we introduce several tests for structural change for parameter stability and establish their asymp-

totic distribution. The null hypothesis is (2), or more precisely HI
0 (s). We present Wald, Lagrange multiplier

2The function h(·) allows for a wide range of alternative hypotheses (see Sowell (1996a)). In its generic form it can be expressed

as the uniform limit of step functions, η ∈ Ri, τ ∈ Rj such that 0 < τ1 < τ2 < . . . < τj < 1 and θ∗ is in the interior of Θ. Therefore

it can accommodate multiple breaks.
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and likelihood ratio-type statistics based on smoothed moment conditions. The first is the usual Wald statistic

which is given by:

WaldT (s) = T
(
β̂1T (s)− β̂2T (s)

)′
(V̂Ω(s))−1

(
β̂1T (s)− β̂2T (s)

)
,

where V̂Ω(s) =
(
V̂1(s)/s + V̂2(s)/(1− s)

)
and V̂i(s) =

(
Ĝβ

i,tT (s)′Ω̂−1
i,T (s)Ĝβ

i,tT (s)
)−1

for i = 1, 2 corresponding

to the first and the second part of the sample. For the first and the second subsamples:

Ĝβ
1,tT (s) =

1
[Ts]

[Ts]∑
t=1

∂gtT (β̂1T (s), δ̂T (s))
∂β′1

,

Ĝβ
2,tT (s) =

1
T − [Ts]

T∑

t=[Ts]+1

∂gtT (β̂2T (s), δ̂T (s))
∂β′2

.

The Lagrange multiplier statistic does not involve estimators obtained from subsamples, rather it relies on

full-sample parameter estimates. The LMT (s) simplifies to (see Andrews, 1993) :

LMT (s) =
T

s(1− s)
ĝ1T (θ̃T , s)′Ω̃−1

T G̃β
tT

[
(G̃β

tT )′Ω̃−1
T G̃β

tT

]−1

(G̃β
tT )′Ω̃−1

T ĝ1T (θ̃T , s).

where

ĝ1T (θ̃T , s) =
1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ),

G̃β
tT =

1
T

T∑
t=1

∂gtT (β̃T , δ̃T )
∂β′

.

Thus, the LMT (s) test corresponds to the projection of the smoothed moment conditions evaluated at the

full-sample estimator on the subspace identifying the parameter vector β.

The LR-type statistic is defined as the difference between the GEL objective function for the full sam-

ple evaluated at the restricted estimator and the partial-sample GEL function evaluated at the unrestricted

estimator:

LRT (s) =
2T

2K + 1




T∑
t=1

[
ρ(λ̂T (θ̃T , s)′gtT (θ̃T , s))− ρ0

]

T
−

T∑
t=1

[
ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s))− ρ0

]

T




where λ̂T (θ̃T , s) =
(
λ̃1T (β̃T , δ̃T , s)′, λ̃2T (β̃T , δ̃T , s)′

)′
is the solution of the respective following maximization

problem:

λ̂1T (β, δ, s) = arg sup
λ1∈Λ̂1T (β,δ,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β, δ))− ρ0]
T

and

λ̂2T (β, δ, s) = arg sup
λ2∈Λ̂2T (β,δ,s)

T∑

t=[Ts]+1

[ρ(λ′2gtT (β, δ))− ρ0]
T
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evaluated at the restricted estimator θ̃T =
(
β̃′T , δ̃′T

)′
with Λ̂1T (β, δ, s) = {λ1 : kλ′1gtT (β, δ) ∈ Φ, t = 1, . . . , [Ts]}

and Λ̂2T (β, δ, s) = {λ2 : kλ′2gtT (β, δ) ∈ Φ, t = [Ts] + 1, . . . , T}.
We state now the main Theorem which establishes the asymptotic distribution of the Wald, LM and LR-type

test statistics under the null and the local alternative (4).

Theorem 3.1. Under the null hypothesis H0 in (2) and Assumptions 6.1 to 6.12, the following processes indexed

by s for a given set S whose closure lies in (0, 1) satisfy:

WaldT (s) ⇒ Qr(s), LMT (s) ⇒ Qr(s), LRT (s) ⇒ Qr(s),

with

Qr(s) =
BBr(s)′BBr(s)

s(1− s)

and under the alternative (4)

Qr(s) =
BBr(s)′BBr(s)

s(1− s)
+

(H(s)− sH(1))′Ω−1/2PGβΩ−1/2 (H(s)− sH(1))
s(1− s)

,

where BBr(s) = Br(s) − sBr(1) is a Brownian bridge, Br is r-vector of independent Brownian motions and

PGβ = Ω−1/2Gβ
[
(Gβ)′Ω−1Gβ

]−1 (Gβ)′Ω−1/2.

Proof: See the Appendix.

Theorem 3.1 tells us that the asymptotic distributions under the null of the Wald, LR-type and LM statistics

are the same as those obtained by Andrews (1993) for the GMM estimator. The asymptotic distribution under

the null and the alternative given in the previous Theorem is only valid for smoothed moment conditions.

Indeed, smoothing the moment conditions is necessary to obtain test statistics whose asymptotic distributions

does not depend on nuisance parameters (except s). This also holds for other results in this paper.

When s is unknown, i.e. the case of unknown breakpoint, we can use the above result to construct statistics

across s ∈ S. In the context of maximum likelihood estimation, Andrews and Ploberger (1994) derived asymp-

totic optimal tests which are characterized by an average exponential form. The Sowell (1996a) optimal tests

are a generalization of the Andrews and Ploberger approach to the case of two measures that do not admit

densities. The most powerful test is given by the Radon-Nikodym derivative of the probability measure implied

by the local alternative with respect to the probability measure implied by the null hypothesis.

The optimal average exponential form is the following:

Exp−QT = (1 + c)−r/2

∫
exp

(
1
2

c

1 + c
QT (s)

)
dH(s)

where various choices of c determine power against close or more distant alternatives and H(·) is the weight

function over the value of s ∈ S. In the case of close alternatives (c = 0), the optimal test statistic takes the

13



average form, aveQT =
∫

S
QT (s)dH(s). For a distant alternative (c = ∞), the optimal test statistics takes

the exponential form, expQT = log
(∫

S
exp[ 12QT (s)]dJ(s)

)
. The supremum form often used in the literature

corresponds to the case where c/(1 + c) →∞. The sup test is given by sup QT = sups∈S QT (s).

The following Theorem gives the asymptotic distribution for the exponential mapping for QT when QT

corresponds to the Wald, LM and LR ratio-type tests under the null.

Theorem 3.2. Under the null hypothesis H0 in (2) and Assumptions 6.1 to 6.12, the following processes indexed

by s for a given set S whose closure lies in (0,1) satisfy:

supQT ⇒ sup
s∈S

Qr(s), aveQT (s) ⇒
∫

S

Qr(s)dJ(s), expQT ⇒ log

(∫

S

exp[
1
2
Qr(s)]dJ(s)

)
,

with

Qr(s) =
BBr(s)′BBr(s)

s(1− s)
.

Proof: See Andrews (1993) and Andrews and Ploberger (1994).

This result is obtained through the application of the continuous mapping theorem (see Pollard (1984)).

This implies that we can rely on the critical values tabulated for the case of GMM-based tests. For example,

the critical values for the statistics defined by the supremum over all breakpoints s ∈ S of WaldT (s), LMT (s)

or LRT (s) can be found in the original paper by Andrews (1993). The same is true for the Sowell (1996a) and

Andrews and Ploberger (1994) asymptotic optimal tests.

3.2 Tests for the stability of the overidentifying restrictions

The tests presented in the previous section are based on the projection of the moment conditions on the subspace

of identifying restrictions. In this section we are interested with testing against violations of HO1
0 (s) or HO2

0 (s).

The local alternatives are given by the projection of the moment condition on the subspace orthogonal to the

identifying restrictions. For instance, in the case of a single breakpoint, the local alternatives by Assumption

2.1 correspond to:

HO1
A (s) : (Iq − PG)Ω−1/2E[gt(θ0)] = (Iq − PG)Ω−1/2 η1√

T
t = 1, . . . , [Ts]

HO2
A (s) : (Iq − PG)Ω−1/2E[gt(θ0)] = (Iq − PG)Ω−1/2 η2√

T
t = [Ts] + 1, . . . , T

Sowell (1996b) introduced optimal tests for the violation of the overidentifying restrictions when the violation

occurs before the breakpoint corresponding to the alternative HO1
A . The statistic is based on the projection of

the partial sum of the full-sample estimator on the appropriate subspace. Hall and Sen (1999) introduce a test

for the case where the violation can occurs before or after the breakpoint i.e. HO1
A or HO2

A . The statistic is

based on the overidentifying restriction test for the sample before and after the considered breakpoint s.
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We propose here statistics specially designed to detect instability before and after the possible breakpoint

that are equivalent to Hall and Sen’s statistics. In these tests, the entire parameter vector is allowed to vary for

both subsamples. Thus θ = (β′1, β
′
2)
′. The first statistic is based on the same statistic as the one of Hall and

Sen (1999) except that it is computed with smoothed moment conditions. The OT (s) statistic is the sum of the

GMM-type criterion function for smoothed moment conditions in each subsample

OT (s) = O1T (s) + O2T (s)

where

O1T (s) =


 1√

[Ts]

[Ts]∑
t=1

gtT (β̂1T (s))



′

Ω̂−1
1T (s)


 1√

[Ts]

[Ts]∑
t=1

gtT (β̂1T (s))




and

O2T (s) =


 1√

(T − [Ts])

[T ]∑

t=[Ts]+1

gtT (β̂2T (s))



′

Ω̂−1
2T (s)


 1√

(T − [Ts])

∑

t=[Ts]+1

gtT (β̂2T (s))


 .

A new test for the GEL counterparts of OT (s) is based on the sum of its objective function for both

subsamples, namely:

OGEL
T (s) = O1GEL

T (s) + O2GEL
T (s)

where

O1GEL
T (s) =

2[Ts]
2K + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̂1T (s), s)′gtT (β̂1T (s)))− ρ0

]

[Ts]

and

O2GEL
T (s) =

2(T − [Ts])
2K + 1

T∑

t=[Ts]+1

[
ρ(λ̂2T (β̂2T (s), s)′gtT (β̂2T (s)))− ρ0

]

T − [Ts]
.

The duality between overidentifying restrictions and the auxiliary Lagrange multiplier parameters λ(·) for

the partial-sample estimation allows us to propose a new structural change test for overidentifying restrictions

based on λ(·). This statistic is defined as following:

LMO
T (s) = LM1O

T (s) + LM2O
T (s)

where

LM1O
T (s) =

[Ts]
(2KT + 1)2

λ̂1T (β̂1T (s), s)′Ω̂1T (s)λ̂1T (β̂1T (s), s)

and

LM2O
T (s) =

[T − Ts]
(2KT + 1)2

λ̂2T (β̂2T (s), s)′Ω̂2T (s)λ̂2T (β̂2T (s), s).
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The equivalence with the overidentifying test of instability results from the fact that
√

[Ts]/(2KT +1)λ̂1T (β̂1T (s), s)

is asymptotically equivalent at the first order to Ω̂1T (s)−1 1√
[Ts]

∑[Ts]
t=1 gtT (β̂1T (s)) and

√
T − [Ts]/(2KT +

1)λ̂2T (β̂2T (s), s) to Ω̂2T (s)−1 1√
T−[Ts]

∑T
t=[Ts]+1 gtT (β̂2T (s)).

The following Theorem provides the asymptotic distribution of QO
T (s) which equals OT (s), OGEL

T (s) and

LMO
T (s) under the null and the alternative hypotheses for the supremum, the average mapping and exponential

mapping.

Theorem 3.3. Under the null of no structural change and Assumptions 6.1 to 6.12, the following processes

indexed by s for a given set S whose closure lies in (0,1) satisfy:

sup QO
T ⇒ sup

s∈s
Qq−r(s), aveQO

T ⇒
∫

S

Qq−r(s)dJ(s), expQO
T ⇒ log

(∫

S

exp[
1
2
Qq−r(s)]dJ(s)

)
,

with

Qq−r(s) =
Bq−r(s)′Bq−r(s)

s
+

[Bq−r(1)−Bq−r(s)]
′ [Bq−r(1)−Bq−r(s)]

(1− s)

and under the alternative (4)

Qq−r(s) =
Bq−r(s)′Bq−r(s)

s
+

[Bq−r(1)−Bq−r(s)]
′ [Bq−r(1)−Bq−r(s)]

(1− s)

+
H(s)′Ω−1/2 (I − PG)Ω−1/2H(s)

(1− s)
+

(H(1)−H(s))′Ω−1/2 (I − PG)Ω−1/2 (H(1)−H(s))
(1− s)

where Bq−r(s) is a q − r-dimensional vector of independent Brownian motion.

Proof: See the Appendix.

The last two terms in the asymptotic distribution under the alternative given in Theorem 3.3 show that

the test statistics have non trivial power to detect overidentifying restrictions instability before and after the

possible breakpoint point. Note also that the asymptotic distributions under the null and the alternative are

only valid for smoothed moment conditions. The asymptotic critical values for the interval S = [.15, .85] can

be found in Hall and Sen (1999). For other symmetric interval [s0, 1 − s0], critical values can be obtained in

Guay (2003), Tables 1 to 3 for a number of overidentifying restrictions divided by 2 (in those tables). To see

this, note that the critical values for the supremum, the average and the log exponential mappings applied to
B2q−2r(s)′B2q−2r(s)

s are equivalent to ones corresponding to Bq−r(s)′Bq−r(s)
s + (Bq−r(1)−Bq−r(s))′(Bq−r(1)−Bq−r(s))

1−s

for a symmetric interval S3.

3.3 Structural change tests robust to weak identification or completely unidentified cases

We propose in this section test statistics robust to the context of weak identification as defined by Stock

and Wright (2000) or to the completely unidentified case. Consider the pure structural change case, namely:
3This is verified by comparing the critical values in Hall and Sen (1999) and Guay (2003). The critical values in Table 1 in Hall

and Sen for q − r in our notation are the same than the critical values in Guay (2003) but for 2q − 2r.
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θ = (β′, β′)′. We first consider the null hypothesis (2) of a one time structural break in the parameter values

presented in Section 2, i.e.

H0 : β1 = β2 = β0. (5)

In this case, under the null θ0 = (β′0, β
′
0)
′. To perform structural change tests, the parameters must be estimated

under the null and/or under the alternative. The dependence of structural change test statistics on a parameter

estimator complicates the derivation of the limit distribution in weakly identified case. In the presence of

weak identification, some of the parameters are not consistent so we can not assume the existence of partial

derivatives of the moment conditions with respect to the whole parameter vector. Consequently, traditional

structural change test statistics are not asymptotically pivotal. To solve this problem, Caner (2007) proposed

structural change tatistics in the continuous updating GMM framework for which the asymptotic distributions

under the null are bounded. The corresponding asymptotic bound is robust to weak identification or completely

unidentified cases and is free of nuisance parameters (except the interval for the breakpoint, as usual). We

follow here the same strategy as Caner (2007) but in the GEL framework.

As aforementioned, we need to replace θ0 by an estimator in order to perform stability tests. In that respect,

let us introduce a restricted estimator θ̃T (s) =
(
β̃T (s)′, β̃T (s)′

)′
obtained with the partial-sample GEL objective

function. A restricted partial-sample GEL estimator {θ̃T (s)} is a sequence of random vectors such that:

θ̃T (s) = arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

P̂ (θ(s), λ(s), s)

= arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)




[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(λ′2gtT (β))− ρ0]
T




= arg min
θ∈Θ


 sup

λ1∈Λ̂1T (β,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ0]
T

+ sup
λ2∈Λ̂2T (β,s)

T∑

t=[Ts]+1

[ρ(λ′2gtT (β))− ρ0]
T




for all s ∈ S with λ(s) = (λ′1, λ
′
2)
′ ∈ R2q×1, Λ̂T (θ, s) = {λ(s) = (λ′1, λ

′
2)
′ : λ(s)′gtT (θ, s)} where gtT (θ, s) =

(gtT (β)′, 0′)′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) = (0′, gtT (β)′)′ ∈ R2q×1 for t = [Ts] + 1, . . . , T . Thus for

a given s

λ̂1T (β, s) = arg sup
λ1∈Λ̂1T (β,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ0]
T

,

λ̂2T (β, s) = arg sup
λ2∈Λ̂2T (β,s)

T∑

t=[Ts]+1

[ρ(λ′2gtT (β))− ρ0]
T

with Λ̂1T (β, s) = {λ1 : λ′1gtT (β) ∈ Φ, t = 1, . . . , [Ts]} and Λ̂2T (β, s) = {λ2 : λ′2gtT (β) ∈ Φ, t = [Ts]+1, . . . , T}.
For this restricted partial-sample GEL, the parameter vector β is restricted to be stable across the sample while

the Lagrange multiplier parameters are allowed to vary across subsamples in contrast to the full-sample GEL.
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A robust test based on the GEL is composed of the sum of its renormalized objective function for both

subsamples, namely:

GELRT (s) = GELR1T (s) + GELR2T (s) =
2T

2KT + 1
P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s)

where

GELR1T (s) =
2[Ts]

2K + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̃T , s)′gtT (β̃T (s)))− ρ0

]

[Ts]

and

GELR2T (s) =
2(T − [Ts])

2K + 1

T∑

t=[Ts]+1

[
ρ(λ̂2T (β̃T , s)′gtT (β̃T (s)))− ρ0

]

T − [Ts]
.

A similar statistic was introduced by Guggenberger and Smith (2008) and Otsu (2006) for testing H0 : θ = θ0

without considering structural change. In their cases, the derivation is facilitated because θ0 is known.

The GEL framework allows us to propose an asymptotically equivalent statistic based on the Lagrange

multiplier parameters λ(·) evaluated at θ̃T (s)4. The statistic is defined as:

LMR
T (s) = LM1R

T (s) + LM2R
T (s)

where

LM1R
T (s) =

[Ts]
(2KT + 1)2

λ̂1T (β̃T (s), s)′Ω̂1T (β̃T (s), s)λ̂1T (β̃T (s), s)

and

LM2R
T (s) =

[T − Ts]
(2KT + 1)2

λ̂2T (β̃T (s), s)′Ω̂2T (β̃T (s), s)λ̂2T (β̃T (s), s).

We show in the Appendix that both test statistics are asymptotically equivalent at the first order to the

S-based test statistic in Caner (2007). The test statistic is not asymptotically pivotal but asymptotically

boundedly pivotal. The bound is then nuisance parameters free and robust to identification problems under the

null. The following Theorem gives this asymptotic bound under the null of no structural change and the local

alternative (4).

Theorem 3.4. Suppose that Assumptions 6.1 to 6.5 and 6.7 to 6.12 hold at the true value of the parameters θ0,

the processes GELRT (s) and LMR
T (s) indexed by s for a given set S whose closure lies in (0, 1) are asymptotically

boundedly pivotal and the asymptotic bound distribution is given by:

QR
q (s) ⇒ Bq(s)′Bq(s)

s
+

[Bq(1)−Bq(s)]
′ [Bq(1)−Bq(s)]

1− s

4We can also propose a LR-type test statistic as in Caner (2007) but for GEL framework. However, Caner (2007) shows that the

LR-type statistic can be very conservative when the number of moment conditions is large compared to the number of parameters.

We can show that this result holds also in the GEL framework for smoothed moment conditions. Moreover, simulation results

provided by Caner (2007) confirm this and his S-based statistic clearly outperforms the LR-type statistic. For this reason, we do

not present the GEL version of the LR-type statistic.
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under the null of no structural change and under the alternative (4)

QR
q (s) ⇒ Bq(s)′Bq(s)

s
+

H(s)′Ω(θ0)−1H(s)
s

[Bq(1)−Bq(s)]
′ [Bq(1)−Bq(s)]

(1− s)
+

[H(1)−H(s)]′ Ω(θ0)−1 [H(1)−H(s)]
(1− s)

,

where Bq(s) is a q-vector of standard Brownian motion.

Proof: See the Appendix.

The asymptotic bound derived in this Theorem depends on the number of moment conditions and the

derivation under the alternative shows that both test statistics can have no trivial power against instability of

parameters and overidentifying restrictions. Since the asymptotic bound is valid for ∀s ∈ S, the supremum, the

average and the exponential mappings of both statistics are also asymptotic bounded by the respective mapping

of the bound. Critical values under the null for the different mappings are given in the same tables than those

in the subsection 3.2.

Now we propose a second set of tests based on the first-order conditions evaluated at the restricted partial

sample GEL estimator. The first statistic is similar to the one proposed by Caner (2007) for the GMM-CUE

which is a Kleibergen (2005)-type statistic but adapted here for the GEL context. To introduce the statistic,

we need to define the following matrices:

D̂1T (β, s) =
1
T

[Ts]∑
t=1

ρ1(λ̂1T (β, s)′gtT (β))GtT (β),

D̂2T (β, s) =
1
T

T∑

t=[Ts]+1

ρ1(λ̂2T (β, s)′gtT (β))GtT (β).

For t = 1, . . . , [Ts], we also define

K1tT (β, s) = D̂1T (β, s)′Ω̂1T (β, s)−1gtT (β)

and for t = [Ts] + 1, . . . , T

K2tT (β, s) = D̂2T (β, s)′Ω̂2T (β, s)−1gtT (β)

with

Ω̂1T (β, s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β)gtT (β)′

and

Ω̂2T (β, s) =
2KT + 1
T − [Ts]

T∑

t=[Ts]+1

gtT (β)gtT (β)′.
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We now need to introduce another restricted estimator θ̃K,T (s) =
(
β̃K,T (s)′, β̃K,T (s)′

)′
obtained with the

restricted partial-sample GEL objective function with K1t(β, s) and K2t(β, s) as moment conditions, namely

θ̃K,T (s) = arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

P̂K(θ(s), υ(s), s)

= arg min
θ∈Θ

sup
υ(s)∈Υ̂T (θ,s)




[Ts]∑
t=1

[ρ(υ′1K1tT (β, s))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(υ′2K2tT (β, s))− ρ0]
T




= arg min
θ∈Θ


 sup

υ1∈Υ̂1T (β,s)




[Ts]∑
t=1

[ρ(υ′1K1tT (β, s))− ρ0]
T


 + sup

υ2∈Υ̂2T (β,s)




T∑

t=[Ts]+1

[ρ(υ′2K2tT (β, s))− ρ0]
T







for all s ∈ S where K1tT (β, s) ∈ Rr×1 and K2tT (β, s) ∈ Rr×1 with υ(s) = (υ′1, υ
′
2)
′ ∈ R2r×1 and Υ̂T (θ, s) =

{υ(s) = (υ′1, υ
′
2)
′ : υ(s)′KtT (θ, s) ∈ Φ, t = 1, . . . , T} where KtT (θ, s) = (K1tT (β, s)′, 0′)′ ∈ R2r×1 for t =

1, . . . , [Ts] and KtT (θ, s) = (0′,K2tT (β, s)′)′ ∈ R2r×1 for t = [Ts] + 1, . . . , T .

The KGELT (s)-statistic for testing the null hypothesis of parameter stability defined in (5) is, for a given

s ∈ S:

KGELT (s) = KGEL1T (s) + KGEL2T (s)

where

KGEL1T (s) =
2[Ts]

2K + 1

[Ts]∑
t=1

[
ρ(υ̂1T (β̃K,T (s), s)′K1tT (β̃K,T (s), s)))− ρ0

]

[Ts]

and

KGEL2T (s) =
2(T − [Ts])

2K + 1

T∑

t=[Ts]+1

[
ρ(υ̂2T (β̃K,T (s), s)′K2tT (β̃K,T (s)))− ρ0

]

T − [Ts]
.

The GEL framework also allows us to propose an asymptotically equivalent test statistic based on the

Lagrange multiplier parameters υ(·) for the moment conditions K1t(β, s) and K2t(β, s) evaluated at β̃K,T (s).

The statistic is defined as:

KLMR
T (s) = KLM1R

T (s) + KLM2R
T (s)

where

KLM1R
T (s) =

[Ts]
(2KT + 1)2

υ̂1T (β̃K,T (s), s)′
(
D̂1T (β̃K,T (s), s)′Ω̂1T (β̃K,T (s), s)−1D̂1T (β̃K,T (s), s)

)
υ̂1T (β̃K,T (s), s)

and

KLM2R
T (s) =

[T − Ts]
(2KT + 1)2

υ̂2T (β̃K,T (s), s)′
(
D̂2T (β̃K,T (s), s)′Ω̂2T (β̃K,T (s), s)−1D̂2T (β̃K,T (s), s)

)
υ̂2T (β̃K,T (s), s).
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Theorem 3.5. The KGELT (s) and KLMR
T (s) processes indexed by s for a given set S whose closure lies in

(0, 1) are asymptotically boundedly pivotal and the asymptotic bound distribution is given by:

Qp(s) ⇒ Br(s)′Br(s)
s

+
[Br(1)−Br(s)]

′ [Br(1)−Br(s)]
1− s

under the null of no structural change and under the alternative (4)

Qp(s) ⇒ Br(s)′Br(s)
s

+
H(s)′Ω(β0)−1/2PG(β0)Ω(β0)−1/2H(s)

s

[Br(1)−Br(s)]
′ [Br(1)−Br(s)]

1− s
+

[H(1)−H(s)]′ Ω(β0)−1/2PG(β0)Ω(β0)−1/2 [H(1)−H(s)]
(1− s)

,

where Br(s) is a r-vector of standard Brownian motion and

PG(β0) = Ω(β0)−1/2G(β0)
(
G(β0)′Ω(β0)−1G(β0)

)−1
G(β0)′Ω(β0)−1/2

with G(β0) = limT→∞
[
T−1

∑T
t=1 ∂gt(β0)/∂β′

]
.

Proof: See the Appendix.

The asymptotic bound depends on the number of parameters rather than the number of moment conditions.

The asymptotic bound under the alternative shows that these test statistics are specifically designed to detect

instability in parameter values. Critical values under the null for the different mappings are also given in the

same tables than those in the subsection 3.2. The asymptotic bound under the local alternative allows us to

examine the power of the test statistic under different assumptions with respect to identification. Consider the

following decomposition of the alternative:

h(η, τ, t
T )√

T
= PG(β0)Ω(β0)−1/2 h(η, τ, t

T )√
T

+
(
Iq − PG(β0)

)
Ω(β0)−1/2 h(η, τ, t

T )√
T

.

This decomposition and the asymptotic bound under the alternative show that the ability of the test statistic

to detect a structural change in the parameter values depends on the Jacobian matrix G(β0). Under weak

identification, as defined by Stock and Wright (2000), GT (β0) has a weak value which means that GT (β0) = C√
T

for a C matrix of dimension q× p. In this case, the test statistic has trivial power equals to the size. Obviously,

it is also the case under unidentification since G(β0) = 0. In fact, the test statistic will detect instability in

parameter values for alternatives such that h(η,τ, t
T )

T α for α ≥ 1 in the weak identification case. For instance, the

test statistic will detect structural change in the parameter values with no trivial power for the following fixed

alternative:

HI
A(s) =

{
β1(s) = β0 ∀t = 1, . . . , [Ts]

β2(s) = β0 + η ∀t = [Ts] + 1, . . . , T.

The discussion above also holds for the S-based test statistic proposed by Caner (2007) who derived the bound

only under the null.
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4 Simulation evidence

In this section, we investigate the small sample properties of structural change tests in the GEL context for well

identified parameters. We leave for future investigation the study of small sample properties of the proposed

structural change tests for weakly identified and unidentified parameters in nonlinear models estimated by GEL

methods.

The tests for an unknown structural change presented in this paper fall in two categories, all considering

structural stability based on GEL estimators. The two categories are the result of splitting the null hypothesis

into two components to explore alternative sources of instability. The first set of tests, the Wald, LM and LR

tests, consider a structural change in the parameters of our model while the second set of tests, the O, OGEL and

LMO tests, focus on a structural change in the overidentifying restrictions imposed on our model. We evaluate

the performance of these tests in a simulated environment identical to the one found in Guay and Lamarche

(2009) who proposed test statistics to detect structural change that are based on the estimated weights of a

GEL problem. This environment was also used by Ghysels et al. (1997) and in Hall and Sen (1999) and consists

of an autoregressive process of order one for a time series xt. Only one parameter is estimated (denoted by β in

the expression below) and two moment conditions formed with the lagged values of xt are used. We therefore

have one overidentifying restriction.

The data generating process is given by

xt = βixt−1 + ut

for t = 1, . . . , T . Structural change in the identifying restrictions (in the parameter) is studied by considering

different values of βi where the index i = 1, 2 denotes the first or second subsamples. Structural stability in the

overidentifying restrictions is studied by allowing for an ARMA(1,2) model

xt = βixt−1 + ut + αut−2

and considering nonzero values of α in the second subsample. The change is set at T/2. In the above, ut ∼
N(0, 1). The sample size was set to 200 observations and the number of Monte Carlo replications was 2000.

Table 1 summarizes the different parametrization and is adapted from Hall and Sen (1999). The null

hypothesis of structural stability is denoted by HS
0 (DGP 1 to 3). For those DGPs we vary the magnitude of the

autoregressive parameter β. The alternatives of instability in the parameters or in the overidentifying restrictions

are denoted by HI
A (DGP 4 to 6), where we vary the magnitude of the change in the autoregressive parameter,

and HO
A (DGP 7 to 10) where we consider various values of the moving average parameter, respectively. In this

situation only one parameter is estimated using two moment conditions created with the first two lags of xt.

Under HS
0 , where α = 0, the instruments are appropriate. Under the first class of alternative hypothesis (HI

A)
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the two instruments are also valid while they no longer are for the second part of the sample with the second

class of alternative hypothesis (HO
A ).

Under the null hypothesis (DGP 1 to 3) and for DGP 4 to 6, we fix KT = 0 since the error term ut are

uncorrelated. For DGPs 7, 8, 9 and 10, we select a bandwidth parameter MT by the automatic, data-driven,

procedure proposed by Newey and West (1994) and KT is fixed as KT = [(MT − 1)/2]. The average KT , taken

over the Monte Carlo replications, was found to vary between 1.6 and 2.3, increasing with the moving average

component. Lastly, a trimming rule of 0.15 was used, namely S = [.15, .85].

Table 2 contains the rejection frequencies for the test statistics designed to have power against a structural

change in the parameters while Table 3 presents the results for test statistics which are designed to have power

against a structural change in the overidentifying restrictions. All test statistics were computed in the GEL

setting and the supremum, exponential and average versions of the test statistics are presented.

Focusing first on size we find that the average and exponential versions of the Lagrange multiplier-based

test, LMO, is very accurate for all data generating processes under the null hypothesis. The O-test proposed

by Hall and Sen (1999) is ranked second with some underrejection while the GEL counterpart of the O test,

the OGEL test which is based on the sum of the GEL objective function in both subsamples, overrejects the

null hypothesis. The average mapping of the OGEL test performs best, having overrejection magnitudes similar

to the underrejection magnitudes of the O test. The standard test (but computed in a GEL setting) for

an unknown structural change, the Wald and LR tests, also overreject the null hypothesis with the average

and exponential LR mappings performing best. The LM test statistics (supremum, average and exponential

mappings) significantly underreject for all DGPs (1 to 3) under the null and have poor power for other DGPs.

For these reasons, the rejection frequencies for the LM test statistics are not reported in the tables here.

The study of power is divided into two cases. In case 1 structural change occurs in the parameter values

while in case 2 structural change occurs in the overidentifying restrictions. Under the alternative of instability

in the parameter, HI
A (DGP 4 to 6), we see that the O, OGEL and LMO tests have no useful power as they

are not geared towards these type of deviations from the null hypothesis. The Wald and LR have good power

properties but one has to keep in mind that their power is inflated due to their overrejections under the null

hypothesis.

Under the alternative of instability in the overidentifying restrictions, e.g. HO
A , (DGP 7 to 10), we see that

the test statistics (the Wald and LR tests) specially designed to detect a change in the parameter have much

less power than O, OGEL and LMO tests. An important result in this paper is that the LMO (and O) tests,

tests that suffer from very little size distortions, have the largest power, and particularly so for the average

mapping. As in Hall and Sen (1999), the power of the O, OGEL and LMO tests is greater than the power

for the Wald and LR tests indicating that testing for an unknown change in the overidentifying restrictions is

important in empirical applications.
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The increase in the autoregressive coefficient from 0 to 0.8 does not impact greatly on the rejection frequencies

under the null hypothesis but under the alternative hypotheses the magnitude of the change is important. Under

HI
A, for example, we see that power is close to unity when the change in the autoregressive parameter is quite

extreme (0 to 0.8, see DGP 5). Under HO
A , which captures a change in the overidentifying restrictions, an

increase (in absolute terms) in the moving average coefficient increases power.

The tests statistics presented in this paper, in particular the LMO tests, should then be added to the Pearson-

type statistics based on implied probabilities to detect structural change presented by Guay and Lamarche (2009)

to complement the specification and testing arsenal of the practitioners. All of these test statistics are computed

using generalized empirical likelihood estimators and are are computed in a single step which eliminates the

need to compute the weighting matrix required for GMM estimation.

5 Conclusion

In this paper we have examined tests for structural change that are based on generalized empirical likelihood

methods and applicable to a time series context. Given the recent developments of generalized empirical

likelihood methods as an alternative to GMM, it appears important to study structural change tests for these

methods of estimation. Test statistics were considered for cases in which the parameters are fully identified as

well as for cases of weak identification and complete unidentification.

We introduced a class of partial-sample GEL estimators and showed that estimators of the Lagrange multi-

plier parameters weakly converge to a function of Brownian motions uncorrelated to the asymptotic distribution

of the vector of parameters. These asymptotic distributions are derived under the null hypothesis of stability

and general alternatives of structural change for an unknown breakpoint. These results allowed us to derive the

asymptotic distributions of structural change tests in the GEL context. Specifically targeted tests, either to a

structural change in the parameters or a structural change in the overidentifying restrictions used to estimate

them, were considered. For the former, we showed that, in a time series context, our test statistics based on

the GEL method followed the same asymptotic distribution than in the GMM context (Andrews, 1993). For

the latter, test statistics equivalent to Hall and Sen’s (1999) statistics in the GMM context were adapted to

the GEL method for smoothed moment conditions. Further, we proposed two new tests specific to the GEL

framework to detect instability in the overidentifying restrictions. We showed that these new statistics have

the same asymptotic distribution at first order than the one derived by Hall and Sen (1999). This paper also

proposed test statistics of structural change in the context of weakly identified or completely unidentified cases

for the GEL framework. The first one is based on a renormalized criterion function of GEL evaluated at a

restricted PS estimator. The second is asymptotically equivalent to the first and is based on the Lagrange

multiplier of the restricted partial-sample estimator. These test statistics are not asymptotically pivotal and
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we show that their limits are bounded by a distribution which is nuisance parameter free and robust to identi-

fication problems. For the first group, the asymptotic bound is a function of the number of moment conditions

while for the second group, the asymptotic bound depends on the number of parameters. Our simulation study

revealed that one of the newly proposed test, the Lagrange multiplier-based test, has very good finite samples

properties, both in terms of size and power. We are currently investigating the small sample properties of tests

for a structural change when the parameters are not fully identified. This will be accomplished using nonlinear

models estimated by GEL methods.
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6 Appendix

6.1 Assumptions

We consider triangular arrays because they are required to derive asymptotic results under the Pitman drift

alternatives. Define X to be the domain of g (·, θ) to include the support of xTt, ∀t,∀T . Let B0 and ∆0 denote

compact subsets of Rr and Rν that contains neighborhoods of β0 and δ0 in the parameter spaces B and ∆.

Finally, let µTt denote the distribution of xTt and let µ̄T = (1/T )
∑T

t=1 µTt. Throughout the Appendix, w.p.a.1

means with probability approaching one; p.s.d. denotes positive semi-definite; ‖·‖ denotes the Euclidean norm of

a vector or matrix;
p→ and d→ denote respectively convergence in probability and in distribution and ⇒ denotes

weak convergence as defined by Pollard (1984, pp. 64-66). Finally, C denotes a generic positive constant that

may differ according to its use.

Assumption 6.1. {xTt : t ≤ T, T ≥ 1} is a triangular array of X-valued rv’s that is L0-near epoch dependent

(NED) on a strong mixing base {YTt : t = . . . , 0, 1, . . . ; T ≥ 1}, where X is a Borel subset of Rk, and {µTt :

T ≥ 1} is tight on X5.

Define the smoothed moment conditions as:6

gtT (β, δ) =
1

MT

t−1∑

m=t−T

k

(
m

MT

)
g (xTt−m, β, δ)

for an appropriate kernel and MT is a bandwidth parameter. From now on, we consider the uniform kernel

proposed by Kitamura and Stutzer (1997):

gtT (β, δ) =
1

2KT + 1

KT∑

m=−KT

g (xTt−m, β, δ) .

Assumption 6.2. KT /T 2 → 0 and KT →∞ as T →∞ and KT = Op

(
T

1
2η

)
for some η > 17.

Assumption 6.3. For some d > max
(
2, 2η

η−1

)
, {g (xTt, β, δ) : t ≤ T, T ≥ 1} is a triangular array of mean zero

Rq-valued rv’s that is L2-near epoch dependent of size − 1
2 on a strong mixing base {YTt : t = . . . , 0, 1, . . . ; T ≥ 1},

of size −d/(d− 2) and sup ‖g (xTt, β, δ) ‖d < ∞.

Assumption 6.4. V ar
(

1√
T

∑Ts
t=1 g (xTt, β, δ)

)
→ sΩ ∀s ∈ [0, 1] for some positive definite q × q matrix Ω.

The above assumptions are sufficient to yield weak convergence of the standardized partial sum of the

smoothed moment conditions under the null and the alternatives (see Lemmas 6.1 and 6.2). In the following,

xt is used to denote xTt for notational simplicity.
5For a definition of Lp-near epoch dependence and tightness, see Andrews (1993, p. 829-830). For a presentation of the concept

of near epoch dependence, we refer the reader to Gallant and White (1988) (chapters 3 and 4).
6Note here that gtT denotes the smoothed moment conditions and xTt a triangular array of random variables.
7This assumption is slightly different than that in Smith (2004) but facilitates the proofs at no real cost.
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Assumption 6.5. g̃ (β0, δ0) = 0 with (β0, δ0) ∈ B×∆ where g̃ (β0, δ0) = limT→∞
∑T

t=1 Eg (xt, β, δ) and B and

∆ are bounded subsets of Rr and Rν , g(xt, β, δ) is continuous in x for all (β, δ) ∈ B ×∆ and is continuous in

(β, δ) uniformly over (β, δ, x) ∈ B ×∆× C for all compact sets C ⊂ X;

Assumption 6.6. For every neighborhood Θ0 ⊂ Θ of θ0, infs∈S

(
infθ∈Θ/Θ0 ‖g(θ, s)‖) > 0 where g(θ, s) =

(sg̃(β1, δ)′, (1− s)g̃(β2, δ)′)
′.

Assumption 6.7. (a) ρ(·) is twice continuously differentiable and concave on its domain, an open interval Φ

containing 0, ρ1 = ρ2 = −1; (b) λ(s) ∈ Λ̂T (s) where Λ̂T (s) = {λ(s) : ‖λ(s)‖ ≤ D
(
T/((2KT + 1)2

)−ζ} for some

D > 0 with 1
2 > ζ > 1

d(1−1/η) .

Assumption 6.7 (b) parallels the assumption in Newey and Smith (2004) and Smith (2004) but for λ(s) =

(λ′1, λ
′
2)
′. It specifies bounds on λ(s) and with the existence of higher than second moments in Assumption 6.3

leads to the arguments λ(s)′gtT (θ, s) being in the domain Φ of ρ(·) w.p.a.1 in the first subsample for all β1, δ

and 1 ≤ t ≤ [Ts] and in the second subsample for all β2, δ and [Ts] + 1 ≤ t ≤ T (see Lemma 6.3).

Under Assumptions 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7, we show for the partial-sample GEL estimator that

sups∈S ‖θ̂T (s) − θ0‖ p→ 0, sups∈S ‖λ̂T (s)‖ p→ 0, ‖λ̂T (s)‖ = Op

(
T/(2KT + 1)2

)−1/2 and

sups∈S ‖ 1
T

∑T
t=1 gtT (θ̂T (s), s)‖ = Op(T−1/2).

The consistency of the full-sample GEL estimator is obtained by slight modifications of Assumptions 6.6 and

6.7 (b). Assumption 6.6 must be modified by a simplified version with g̃(β, δ) instead of g(θ, s). Assumption

6.7 (b) holds but for the full-sample Lagrange multiplier λ. The consistency result that θ̃T
p→ θ0 is then derived

under weaker conditions than in Smith (2004).

The following high level assumptions are sufficient to derive the weak convergence under the null of the

PS-GEL estimators θ̂T (s) and λ̂T (s). These assumptions are similar to the ones in Andrews (1993).

Assumption 6.8. sups∈S ‖Ω̂iT (s)−Ω‖ p→ 0 where Ω is defined in Section 2.1 and S whose closure lies in (0, 1)

for i = 1, 2.

Assumption 6.8 holds under conditions given in Andrews (1991) and Lemma A.3 in Smith (2004). To respect

these conditions, Assumption 6.3 can be replaced by the following assumption:

Assumption 6.3′. {g (xTt, β, δ) : t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-

mixing with mixing coefficients
∑∞

j=1 j2α(j)(ν−1)/ν < ∞ for some ν > 1 and supt≤T,T≥1E‖g (xTt, β, δ) ‖d < ∞
for some d > max

(
4ν, 2η

η−1

)
.

Assumptions 6.3′ and 6.8 guarantee for the full-sample and partial-sample GEL that

Ω̃T =
2K + 1

T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′
p→ Ω

and

Ω̂T (s) =
2K + 1

T

T∑
t=1

gtT (θ̂T (s), s)gtT (θ̂T (s), s)′
p→ Ω(s).
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Now, let G(β, δ) = limT→∞ 1
T

∑T
t=1 E [∂g(xt, β, δ)/∂ (β′, δ′)] and G = G(β0, δ0).

Assumption 6.9. g(x, β, δ) is differentiable in (β, δ) ,∀ (β, δ) ∈ B0 ×∆0 ∀x ∈ X0 ⊂ X for a Borel measurable

set X0 that satisfies P (xt ∈ X0) = 1∀t ≤ T, T ≥ 1, g(x, β, δ) is Borel measurable in x ∀ (β, δ) ∈ B0 × ∆0,

∂g(xt, β, δ)/∂ (β′, δ′) is continuous in (x, β, δ) on X×B0 ×∆0,

sup
1≤t≤T

E

[
sup

(β,δ)∈B0×∆0

‖∂g(xt, β, δ)/∂ (β′, δ′) ‖d/(d−1)

]
< ∞

and rank(G) = r + ν.

Assumption 6.10. limT→∞ 1
T

∑Ts
t=1 EgtT (β, δ) exists uniformly over (β, δ, s) ∈ B × ∆ × S and equals

s limT→∞ 1
T

∑T
t=1 Eg(xt, β, δ) = sg̃(β, δ).

Assumption 6.11. limT→∞ 1
T

∑Ts
t=1 E∂gtT (β0, δ0)/∂ (β′, δ′) exists uniformly over s ∈ S and equals sG ∀s ∈ S

and S whose closure lies in (0, 1).

Assumption 6.12. G(s)′Ω(s)−1G(s) is nonsingular ∀s ∈ S and has eigenvalues bounded away from zero ∀s ∈ S

and S whose closure lies in (0, 1).

Assumptions 6.10 and 6.11 are asymptotic covariance stationary conditions and follow directly from EgtT (β, δ) =

Egt(β, δ) + op(1) and E∂gtT (β0, δ0)/∂ (β′, δ′) = E∂gt(β0, δ0)/∂ (β′, δ′) + op(1) for the uniform kernel. Assump-

tion 6.12 guarantees that the partial-sample GEL estimators θ̂T (s) has a well defined asymptotic variance ∀s ∈ S

and holds if Gβ and Gδ are full rank.

6.2 Lemmas

Lemma 6.1. Under Assumptions 6.1 to 6.4, the asymptotic distribution of the smoothed moment conditions

under the null is given by:

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0) ⇒ B(s),

where B(s) is a q-dimensional vector of standard Brownian motion.

Proof of Lemma 6.1

First, under Assumptions 6.1, 6.3 and 6.4 , Lemma A4 in Andrews (1993) implies:

Ω−1/2

[Ts]∑
t=1

gt (β0, δ0) ⇒ B(s)

where B(s) is a q-vector of standard Brownian motion.

Second, the smoothed moment condition are defined as:

Ω−1/2 1√
T

[Ts]∑
t=1

1
2KT + 1

KT∑

j=−KT

gt−j (β0, δ0) .
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Considering the ”endpoint effect” introduced by the extra KT terms, we have:

[Ts]∑
t=1

KT∑

j=−KT

1
2KT + 1

gt−j (β0, δ0) =
[Ts]∑
t=1

1
2KT + 1

min{t−1,KT }∑

j=max{t−[Ts],−KT }
gt−j (β0, δ0)

=
[Ts]−KT∑

t=KT +1

gt(θ0) +
KT∑
t=1

t + KT

2KT + 1
gt(β0, δ0) +

[Ts]∑

t=[Ts]−KT +1

[Ts]− t + KT + 1
2KT + 1

gt(β0, δ0)

=
[Ts]∑
t=1

gt(β0, δ0) +
KT∑
t=1

t−KT − 1
2KT + 1

gt(β0, δ0) +
[Ts]∑

t=[Ts]−KT +1

[Ts]− t−KT

2KT + 1
gt(β0, δ0)

which implies that

[Ts]∑
t=1

gt (β0, δ0) =
[Ts]∑
t=1

gtT (β0, δ0) + Op

(
K2

T

2KT + 1

)
.

Under the Assumptions that max1≤t≤T ‖gt(β0, δ0)‖ = op(T 1/2) and K2
T /T → 0, we get

Ω−1/2 1√
T

[Ts]∑
t=1

gt (β0, δ0) = Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0) + op(1)

which yields the asymptotic equivalence.

The following Lemma provides the asymptotic distribution of the smoothed moment condition under the

general sequence of local alternatives appearing in (4).

Lemma 6.2. Under the alternative (4) and let Assumptions 6.1, 6.2, 6.4 and replacing g(xt, β, δ) by g(xt, β, δ)−
h(η, τ, t

T )/
√

T in Assumption 6.3, then

1√
T

Ω−1/2

[Ts]∑
t=1

gtT (β0, δ0) ⇒ B(s) + Ω−1/2H(s)

where H(s) =
∫ s

0
h(η, τ, u)du and B(s) is a q-dimensional vectors of standard Brownian motion.

Proof of Lemma 6.2

Under the alternative (4), by the Lemma A4 of Andrews (1993), the sample smoothed moments satisfy:

Ω−1/2 1√
T

[Ts]∑
t=1

1
2KT + 1

KT∑

j=−KT

(
gt−j (β0, δ0)− h ((t− j)/T )√

T

)
⇒ B(s),

where h(t/T ) ≡ h(η, τ, t
T ) to reduce the notation. The left-hand side term can be rewritten as:

Ω−1/2 1√
T

[Ts]∑
t=1

KT∑

j=−KT

gt−j (β0, δ0)− Ω−1/2 1√
T

[Ts]∑
t=1

1
2KT + 1

KT∑

j=−KT

h ((t− j)/T )√
T

.
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Let us now examine the last term,

1√
T

[Ts]∑
t=1

1
2KT + 1

KT∑

j=−KT

h ((t− j)/T )√
T

=
1√
T

[Ts]∑
t=1

1
2KT + 1

min{t−1,KT }∑

j=max{t−[Ts],−KT }

h ((t− j)/T )√
T

which equals

1
T

[Ts]−KT∑

t=KT +1

h (t/T ) +
1
T

KT∑
t=1

t + KT

2KT + 1
h (t/T ) +

1
T

[Ts]∑

t=[Ts]−KT +1

[Ts]− t + KT + 1
2KT + 1

h (t/T )

=
1
T

[Ts]∑
t=1

h (t/T )√
T

+
1
T

KT∑
t=1

t−KT − 1
2KT + 1

h (t/T ) +
1
T

[Ts]∑

t=[Ts]−KT +1

[Ts]− t−KT

2KT + 1
h (t/T ) .

The first term of the last equality converges to
∫ s

0
h(ν)dν. Under the assumption that K2

T

T → 0, the last two

terms converge to zero. The result follows.

Lemma 6.3. Under the null and Assumptions 6.3 and 6.7,

sup
s∈S

sup
θ∈Θ,λ(s)∈Λ̂T (s),1≤t≤T

|λ(s)′gtT (θ, s) | p→ 0.

Also w.p.a.1 Λ̂T (s) ⊆ Λ̂T (θ, s) where Λ̂T (θ, s) = {λ(s) = (λ′1, λ
′
2)
′ : λ(s)′gtT (θ, s) ∈ Φ, (t = 1, . . . , T )}.

Proof of Lemma 6.3

We first show that the results hold for both subsambles for a given s. Let Λ̂1T (s) = Λ̂T (s) for t = 1, . . . , [Ts])

and Λ̂2T (s) = Λ̂T (s) for t = [Ts] + 1, . . . , T ). So, we have

sup
θ∈ΘT ,λ∈Λ̂T (s),1≤t≤T

|λ(s)′gtT (θ, s) | ≤ sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) |

+ sup
β∈B,δ∈∆,λ2∈Λ̂2T (s),[Ts]+1≤t≤T

|λ′2gtT (β, δ) |.

Consider the first subsample, by the Cauchy-Schwarz inequality and Assumption 6.7 (b)

sup
β∈B,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | ≤ D
(
T/(2KT + 1)2

)−ζ
sup

β∈B,δ∈∆,1≤t≤[Ts]

‖gtT (β, δ) ‖

For the last term on the RHS, we get

sup
β∈B,δ∈∆,1≤t≤[Ts]

‖gtT (β, δ) ‖ ≤ 1
2K + 1

sup
β∈B,δ∈∆,1≤t≤[Ts]

∥∥∥∥∥∥

min{t−1,KT }∑

m=max{t−[Ts],−KT }
gt−m (β, δ)

∥∥∥∥∥∥
≤ sup

β∈B,δ∈∆,1≤t≤[Ts]

‖gt (β, δ) ‖
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uniformly in t. Using Assumption 6.3 and by Markov’s inequality:

sup
β∈B,δ∈∆,1≤t≤T

‖gt (β, δ) ‖ = Op

(
T 1/d

)
.

Hence

sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | ≤ D
(
T/(2KT + 1)2

)−ζ
Op

(
T 1/d

)
p→ 0

by Assumption 6.7 (b). This also holds for the second subsample.

Therefore under the null

sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | p→ 0

and λ′1gtT ∈ Φ for t = 1, . . . , [Ts] w.p.a.1 for all β ∈ B, δ ∈ ∆ which implies that λ1 ∈ Λ̂1T (β, δ, s). For the

second subsample,

sup
β∈B,δ∈∆,λ2∈Λ̂2T (s),[Ts]+1≤t≤T

|λ′2gtT (β, δ) | p→ 0

and λ′2gtT ∈ Φ for t = [Ts] + 1, . . . , T w.p.a.1 for all β ∈ B, δ ∈ ∆ which implies that λ2 ∈ Λ̂2T (β, δ, s). Finally,

these results holds uniformly ∀s ∈ S.

Lemma 6.4. Under Assumptions 6.1, 6.2, 6.3, 6.5 and 6.10

sup
s∈S

sup
θ∈Θ

‖gT (θ, s)− g(θ, s)‖ p→ 0

where g(θ, s) = (sg̃(β, δ)′, (1− s)g̃(β, δ)′)′.

Proof of Lemma 6.4

Using
∑T

[Ts]+1 =
∑T

1 −
∑[Ts]

1 , the result of the Lemma holds if

sup
β∈B,δ∈∆

sup
Ts≤R≤T

∣∣∣∣∣
1
T

R∑
t=1

[gtT (β, δ)− g(β, δ)]

∣∣∣∣∣
p→ 0

where s = inf{s : s ∈ S}.
By the triangular inequality

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥
1
T

R∑
t=1

[gtT (xt, β, δ)− g(β, δ)]

∥∥∥∥∥ ≤ sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥
1
T

R∑
t=1

[gtT (β, δ)− EgtT (β, δ)]

∥∥∥∥∥

+ sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥
1
T

R∑
t=1

[EgtT (β, δ)− g(β, δ)]

∥∥∥∥∥ .
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We show that both terms on the right-hand side converge in probability to zero. For the first term, we first

show that 1
T

∑R
t=1 [gtT (β, δ)− EgtT (β, δ)] = 1

T

∑R
t=1 [gt(β, δ)− Egt(β, δ)] + op(1). By the proof similar to the

one in Lemma 6.1, we can show that:

1
T

R∑
t=1

gt(β, δ) =
1
T

R∑
t=1

gtT (β, δ) + op(1).

This also holds for the partial sum of the expectation, the result follows. Now using Lemma A3 in Andrews

with Assumptions 6.1 and 6.7 guarantees the UWL for supR≤T

∥∥∥ 1
T

∑R
t=1 [gt(β, δ)− Egt(β, δ)]

∥∥∥. This yields

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥
1
T

R∑
t=1

[gt(β, δ)− Egt(β, δ)]

∥∥∥∥∥
p→ 0

which directly implies

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥
1
T

R∑
t=1

[gtT (β, δ)− EgtT (β, δ)]

∥∥∥∥∥
p→ 0.

For the second term, by a similar argument 1
T

∑R
t=1 EgtT (β, δ) = 1

T

∑R
t=1 Egt(β, δ)+op(1) and the convergence

in probability to zero holds by Assumption 6.10.

Now define

P̂ (θ(s), λ(s), s) =
T∑

t=1

[ρ(kλ(s)′gtT (θ, s))− ρ0]
T

=
[Ts]∑
t=1

[ρ(kλ′1gtT (β1, δ))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(kλ′2gtT (β2, δ))− ρ0]
T

and ĝT (θ0, s) = 1
T

∑T
t=1 gtT (θ0, s).

Lemma 6.5. Under Assumptions 6.3, 6.7 and 6.8, there is a constant C such that w.p.a.1.

1
2KT + 1

sup
s∈S

sup
λ(s)∈Λ̂T (θ0,s)

P̂ (θ0, λ(s), s) = sup
s∈S

C‖ĝT (θ0, s)‖2.

Proof of Lemma 6.5

By a proof similar to the one of Lemma A.5 in Smith (2004)8, we can show that

1
2KT + 1

sup
λ(s)∈Λ̂T (θ0,s)

P̂ (θ0, λ(s), s) = C‖ĝT (θ0, s)‖2

for a given s ∈ S w.p.a.1. Since this holds for all s ∈ S, this holds for s which achieves the supremum.

8In his proof, Smith (2004) uses the fact that (2KT + 1)
∑T

t=1 ρ2

(
λ̇′gtT (β0, δ0)

)
gtT (β0, δ0)gtT (β0, δ0)′/T

p→ −Ω in

our notation. This needs more restrictive assumptions than those imposed here. In fact, we only need that (2KT +

1)
∑T

t=1 ρ2

(
λ̇′gtT (β0, δ0)

)
gtT (β0, δ0)gtT (β0, δ0)′/T ≤ −CIq in the p.s.d. sense w.p.a.1 which holds by the fact that the outer

product of smoothed moment conditions is automatically positive semi-definite.
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6.3 Proofs of Theorems

Proof of Theorem 2.1

The outline of the proof is similar to that of Lemma A.6 and Theorem 2.2 in Smith (2004) except that the

results have to be established uniformly in s ∈ S and by taking into account of the differences in Assumptions

6.2, 6.3 and 6.7 with respect to the corresponding assumptions in Smith (2004).

First, we show that sups∈S ‖ĝT (θ̂T (s), s)‖2 = Op(T−1) which allows us to show that sups∈S ‖θ̂(s)− θ0‖ p→ 0.

By arguments similar to Smith (2004), we can show that
∑T

t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T = Op(1). Fol-

lowing Newey and Smith (2001) and Smith (2004), let

λ̄T (s) =
(
λ̄′1T , λ̄′2T

)′ = − 1
T

T∑
t=1

gtT (θ̂T (s), s)κT /‖gT (θ̂T (s), s)‖

with κT = D
(
T/(2KT + 1)2

)−ζ and

λ̄1T = − 1
T

[Ts]∑
t=1

gtT (β̂1T , δT )κT /‖gT (θ̂T (s), s)‖,

λ̄2T = − 1
T

T∑

t=[Ts]+1

gtT (β̂2T , δT )κT /‖gT (θ̂T (s), s)‖.

By Lemma 6.3, sups∈S max1≤t≤T |λ̄(s)′gtT

(
θ̂T (s), s

)
| p→ 0 and λ̄T (s) ∈ ΛT (θ̂T (s), s) w.p.a.1. Thus, for a given

s, λ̇T (s) =
(
λ̇′1T , λ̇′2T

)′
with λ̇1T = τ1λ̄1T , 0 ≤ τ1 ≤ 1 and λ̇2T = τ2λ̄2T , 0 ≤ τ2 ≤ 1,

sup
s∈S

T∑
t=1

[
ρ2(λ̇T (s)′gtT (θ̂T (s), s))− ρ2(0)

]
gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

p→ 0

and therefore sups∈S(2KT + 1)
∑T

t=1 ρ2(λ̇T (s)′gtT (θ̂T (s), s))gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T ≥ −CI2q in the p.s.d.

sense w.p.a.1. Hence, by a second-order Taylor expansion

1
2KT + 1

P̂ (θ̂T (s), λ̄T (s), s) = −
(

λ̄T (s)
2KT + 1

)′
ĝT (θ̂T (s), s)

+
(

λ̄T (s)
2KT + 1

)′( T∑
t=1

ρ2(λ̇T (s)′gtT (θ̂T (s), s)ĝtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

)
λ̄T (s)/2

≥ −
(

λ̄T (s)
2KT + 1

)′
ĝT (θ̂T (s), s)− C

(
λ̄T (s)

2KT + 1

)′(
λ̄T (s)

2KT + 1

)

= ‖ĝT (θ̂T (s), s)‖
(

κT

2KT + 1

)
− C

(
κT

2KT + 1

)2
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w.p.a.1 and this holds ∀s ∈ S. Now using Lemma 6.5, we get w.p.a.1

sup
s∈S

‖ĝT (θ̂T (s), s)‖
(

κT

2KT + 1

)
− C

(
κT

2KT + 1

)2

≤ sup
s∈S

1
2KT + 1

P̂
(
θ̂T (s), λ̄T (s), s

)

≤ sup
s∈S

sup
λ(s)∈Λ̂T (θ̂T (s),s)

1
2KT + 1

P̂
(
θ̂T (s), λ(s), s

)

≤ sup
s∈S

sup
λ(s)∈Λ̂T (θ0,s)

1
2KT + 1

P̂ (θ0, λ(s), s)

≤ sup
s∈S

C‖ĝT (θ0, s)‖2 = Op

(
T−1

)

as ‖ĝT (θ0, s)‖ = Op(T−1/2) by CLT (Corollary 3.1 of Wooldridge and White (1988)). This yields

sup
s∈S

‖ĝT (θ̂T (s), s)‖ ≤ C

(
κT

2KT + 1

)
+ sup

s∈S
C‖ĝT (θ0, s)‖2

(
κT

2KT + 1

)
= Op (κT /(2KT + 1)) ,

which implies sups∈S ‖ĝT (θ̂T (s), s)‖ = Op(T−1/2) by Assumption 6.2 for all η > 1. By the result that

sups∈S ‖gT (θ̂T (s), s‖ = Op(T−1/2) we have that sups∈S gT (θ̂T (s), s)
p→ 0. By Lemma 6.4, sups∈S supθ∈Θ ‖gT (θ, s)−

g(θ, s)‖ p→ 0 and g(β, δ) is continuous by Assumption 6.5. The triangular inequality then gives that sups∈S g(θ̂T (s), s)
p→

0. Since g(β, δ) = 0 has a unique zero at β0 and δ0 (by Assumption 6.6), for every neighborhood Θ0(∈ Θ) of

θ0, infs∈S

(
infθ∈Θ/Θ0 ‖g(θ, s)‖) > 0, then sups∈S ‖θ̂T (s)− θ0‖ p→ 0.

Now we need to show sups∈S ‖λ̂T (s)‖ = Op

((
T/(2K + 1)2

)−1/2
)
and sups∈S ‖λ̂T (s)‖ p→ 0. By a second-

order Taylor expansion around λ(s) = 0, for a given s ∈ S and for any λ̇T (s) =
(
λ̇′1T , λ̇′2T

)′
with λ̇1T =

τ1λ̂1T , 0 ≤ τ1 ≤ 1 and λ̇2T = τ2λ̂2T , 0 ≤ τ2 ≤ 1

(2KT + 1)P̂
(
θ̂T (s), 0, s

)
≤ sup

λ(s)∈Λ̂T (θ̂T (s),s)

(2KT + 1)P̂
(
θ̂T (s), λ(s), s

)

= (2KT + 1)P̂ (θ̂T (s), λ̂T (s), s)

≤ −(2KT + 1)λ̂T (s)′ĝT (θ̂T (s), s)

+ λ̂T (s)′
(

(2KT + 1)
T∑

t=1

ρ2(λ̇T (s)′gtT (θ̂T (s), s))ĝtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

)
λ̂T (s)/2

≤ −(2KT + 1)λ̂T (s)′ĝT (θ̂T (s), s)− Cλ̂T (s)′λ̂T (s)

≤ (2KT + 1)‖λ̂T (s)‖‖ĝT (θ̂T (s), s)‖ − C‖λ̂T (s)‖2

w.p.a.1. Since P̂
(
θ̂T (s), 0, s

)
= 0,∀s ∈ S, this implies directly that C‖λ̂T (s)‖ ≤ (2KT + 1)‖ĝT (θ̂T (s), s)‖ and

this holds for all s ∈ S which implies that sups∈S C‖λ̂T (s)‖ ≤ sups∈S(2KT + 1)‖ĝT (θ̂T (s), s)‖. Finally, consid-

ering that sups∈S ‖ĝT (θ̂T (s), s)‖ = Op(T−1/2) directly yields that sups∈S ‖λ̂T (s)‖ = Op

[(
T/(2KT + 1)2

)−1/2
]

and sups∈S ‖λ̂T (s)‖ p→ 0 by Assumption 6.2.

Proof of Theorem 2.2
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The first-order conditions of the partial-sample GEL with respect to λ(s) and θ(s) are:

1
T

T∑
t=1

ρ1(λ̂T (s)′gtT (θ̂T (s), s))gtT (θ̂T (s), s) = 0.

1
T

T∑
t=1

ρ1(λ̂T (s)′gtT (θ̂T (s), s))GtT (θ̂T (s), s)′λ̂T (s) = 0.

By a mean-value expansion of the former first-order conditions for the partial-sample GEL where

ΞT =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′, λ̂1T (s)′

2KT +1 , λ̂2T (s)′

2KT +1

)′
and Ξ0 = (β′0, β

′
0, δ

′
0, 0, 0)′ with the latter first-order conditions

yields:

0 = −T 1/2

(
0

1
T

∑T
t=1 gtT (θ0, s)

)
+ M̄(s)T 1/2

(
Ξ̂T (s)− Ξ0

)

where

1
T

T∑
t=1

gtT (θ0, s) =
1
T

[Ts]∑
t=1

[
gtT (β0, δ0)

0

]
+

1
T

T∑

t=[Ts]+1

[
0

gtT (β0, δ0)

]

and

M̄(s) =
1
T

T∑
t=1

[
0 M̄12(s)

M̄21(s) M̄22(s)

]

with M̄12(s) = ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)′, M̄21(s) = ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̄T (s), s)′ and

M̄22(s) = (2KT + 1) ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′ and θ̄T (s) is a random vector on the

line segment joining θ̂T (s) and θ0 and λ̄T (s) is a random vector joining λ̂T (s) to (0′, 0′)′ that may differ from

row to row.

Now, we need to show that M̄(s)
p→ M(s) where

M(s) = −
[

0 G(s)′

G(s) Ω(s)

]
.

By Lemma 6.3:

sup
s∈S

sup
1≤t≤T

|λ̂T (s)′gtT (θ̂T (s), s)| p→ 0

and

sup
s∈S

sup
1≤t≤T

|λ̄T (s)′gtT (θ̄T (s), s)| p→ 0

which implies

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0
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and

sup
s∈S

max
1≤t≤T

|ρ2

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ2(0)| p→ 0.

To show that

sup
s∈S

1
T

T∑
t=1

ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)

p→ −G(s)

and

sup
s∈S

1
T

T∑
t=1

ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)

p→ −G(s),

it remains to show that

sup
s∈S

∥∥∥∥∥
1
T

T∑
t=1

GtT (θ̂T (s), s)−G(s)

∥∥∥∥∥
p→ 0.

By the triangular inequality

sup
s∈S

∥∥∥∥∥
1
T

T∑
t=1

GtT (θ̂T (s), s)−G(s)

∥∥∥∥∥ ≤ sup
s∈S

∥∥∥∥∥
1
T

T∑
t=1

GtT (θ̂T (s), s)− E
1
T

T∑
t=1

GtT (θ̂T (s), s)

∥∥∥∥∥

+ sup
s∈S

∥∥∥∥∥E
1
T

T∑
t=1

GtT (θ̂T (s), s)− E
1
T

T∑
t=1

GtT (θ0, s)

∥∥∥∥∥

+ sup
s∈S

∥∥∥∥∥E
1
T

T∑
t=1

GtT (θ0, s)−G(s)

∥∥∥∥∥ .

The first term on the right-hand side
p→ 0 by an application of UWL given by Lemma A3 in Andrews (1993)

which implies

sup
s∈S

sup
θ∈Θ

∥∥∥∥∥
1
T

T∑
t=1

GtT (θ̂T (s), s)− E
1
T

T∑
t=1

GtT (θ̂T (s), s)

∥∥∥∥∥
p→ 0.

The second term
p→ 0 under the tightness of {µ̄T ; T ≥ 1} (Assumption 6.1), Assumption 6.9 and (β, δ)

p→ (β0, δ0)

(see equations A.13 and A.14 in Andrews 1993). Finally, the third term
p→ 0 by Assumption 6.11 and by∑[Ts]

t=1 Gt(θ0, s) =
∑[Ts]

t=1 GtT (θ0, s) + op(1).

Assumptions 6.8 implies that

2KT + 1
T

[Ts]∑
t=1

gtT (β̄1T , δ̄T )gtT (β̂1T , δ̂T )′
p→ sΩ

and

2KT + 1
T

T∑

t=[Ts]+1

gtT (β̄2T , δ̄T )gtT (β̂2T , δ̂T )′
p→ (1− s)Ω
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which yields

2KT + 1
T

T∑
t=1

ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′

p→ −Ω(s).

Moreover, under Assumption 6.12:

M(s)−1 =

[
−Σ(s) H(s)

H(s)′ P (s)

]

where Σ(s) =
(
G(s)′Ω(s)−1G(s)

)−1, H(s) = Σ(s)G(s)′Ω(s)−1 and P (s) = Ω(s)−1−Ω(s)−1G(s)Σ(s)G(s)′Ω(s)−1.

As M̄(s) is positive definite w.p.a.1, we obtain:

√
T (ΞT (s)− Ξ0) = −M̄−1(s)

(
0,−

√
T

1
T

T∑
t=1

gtT (θ0, s)′
)

+ op(1)

= − (H(s)′, P (s))′
√

T
1
T

T∑
t=1

gtT (θ0, s) + op(1).

We also have by Lemma 6.1,

Ω−1 1√
T

T∑
t=1

gtT (θ0, s) ⇒ J(s)

for s ∈ S. Combining the results above yields:

√
T

(
θ̂T (s)− θ0

)
= − (

G(s)′Ω(s)−1G(s)
)−1

G(s)′Ω(s)−1 1√
T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ − (
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1J(s)

and
√

T

2KT + 1
λ̂T (s) = −

(
Ω−1(s)− Ω−1(s)G(s)

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

) 1√
T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ −
(
Ω−1(s)− Ω−1(s)G(s)

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

)
J(s).

Proof of Theorem 2.3

This is a direct implication of Lemma 6.2 and the proof of Theorem 2.2.
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Proof of Theorem 3.1

The results for the WaldT (s) and LMT (s) under the null can be directly derived from similar arguments to

those used in the proof of Theorem 3 in Andrews (1993). For the Wald statistic:

Ĝβ
1,tT (s) =

1
[Ts]

[Ts]∑
t=1

∂gt(β̂1T (s), δ̂T (s))
∂β′1

+ op(1),

Ĝβ
2,tT (s) =

1
T − [Ts]

T∑

t=[Ts]+1

∂gt(β̂2T (s), δ̂T (s))
∂β′2

+ op(1),

Ω̂1T (s)
p→ Ω1(s), Ω̂2T (s)

p→ Ω2(s)

and for the LM statistic:

ĝ1T (θ̃T , s) =
1
T

[Ts]∑
t=1

gt(β̃T , δ̃T ) + op(1),

G̃β
tT =

1
T

T∑
t=1

∂gt(β̃T , δ̃T )
∂β′

+ op(1),

Ω̃T
p→ Ω.

The asymptotic distribution under the alternative is a direct implication of Theorem 2.3. For the LRT (s)

statistic, expanding the partial-sample GEL objective function evaluated at the unrestricted estimator about

λ = 0 yields,

2T

(2KT + 1)
1
T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s) = − 2T

(2KT + 1)
1
T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)−

T

(2KT + 1)
1
T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)gtT (θ̂T (s), s)′λ̂T (θ̂T (s), s)

+ op(1)

since ρ1(·) p→ −1 and ρ2(·) p→ −1.

By the fact that Ω̂T (s) = 2KT +1
T

∑T
t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′ is a consistent estimator of Ω(s) and by√

T/(2KT + 1)λ̂T (s) = −Ω(s)−1 1√
T

∑T
t=1 gtT (θ̂T (s), s)) + op(1), we get

2T

(2KT + 1)
1
T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)) = TgT (θ̂T (s), s)′Ω(s)−1gT (θ̂T (s), s) + op(1).

Similarly, the expansion of the partial-sample GEL objective function but evaluated at the restricted estimator

yields:

2T

(2KT + 1)
1
T

T∑
t=1

ρ(λ̂T (θ̃T , s)′gtT (θ̃T , s)) = TgT (θ̃T , s)′Ω(s)−1gT (θ̃T , s) + op(1)
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since that Ω̃T (s) = 2KT +1
T

∑T
t=1 gtT (θ̃T , s)gtT (θ̃T , s)′ is a consistent estimator of Ω(s) under the null. The

LRT (s) is then asymptotically equivalent to the LR statistic defined in Andrews (1993) for the standard GMM.

Proof of Theorem 3.3

First, for the statistic OT (s), the asymptotic equivalence between
∑[Ts]

t=1 gtT (β̂1T (s)) with∑[Ts]
t=1 g(β̂1T (s)) and

∑T
t=[Ts]+1 gtT (β̂1T (s)) with

∑T
t=[Ts]+1 g(xt, β̂1T (s)) is direct implication of the Lemmas 6.1

and 6.2 and by the asymptotic consistency of the estimator Ω̂1T (s) and Ω̂2T (s) for Ω, the result under the null

and alternative follows directly from the proofs for Theorems 2.2 and 2.3 and subsection A.2 in Hall and Sen

(1999).

Second, for the statistic OT (s)GEL, as in the proof of Theorem 3.2, we can show that:

2[Ts]
2KT + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̂1T (s), s)′gtT (β̂1T (s)))− ρ0

]

[Ts]
= O1T (s) + op(1).

and

2(T − [Ts])
2KT + 1

T∑

t=[Ts]+1

[
ρ(λ̂2T (β̂2T (s), s)′gtT (β̂2T (s)))− ρ0

]

T − [Ts]
= O2T (s) + op(1)

The asymptotic distribution under the null and the alternative follows directly.

Finally, for the statistic LMO
T (s), the have the following asymptotic equivalences:

√
[Ts]

(2KT + 1)
λ̂1T (β̂1T (s), s) = −Ω(s)−1([Ts])−1/2

[Ts]∑
t=1

gtT (β̂1T (s)) + op(1)

√
T − [Ts]

(2KT + 1)
λ̂2T (β̂2T (s), s) = −Ω(s)−1(T − [Ts])1/2

T∑

t=[Ts]+1

gtT (β̂2T (s)) + op(1)

which implies directly the asymptotic distribution of this statistic under the null and the alternative.

Proof of Theorem 3.4

Since θ̃T (s) minimizes the restricted partial sample GEL for all s ∈ S, this implies for all s ∈ S and all T ,

P̂ (θ̃T (s), λ̂T (θ̃T (s), s) ≤ P̂ (θ0, λ̂T (θ̃T (s), s), s).

The limit for P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then bounded by the limit of P̂ (θ0, λ̂T (θ̃T (s), s), s). Let λ̂T (θ0, s) =

arg maxλs∈Λ̂T (θ0,s) P̂ (θ0, λ(s), s) and λ̇T (s) = τ λ̂T (s), 0 ≤ τ ≤ 1. Thus, P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s)

≤ P̂ (θ0, λ̂T (θ̃T (s), s), s) ≤ P̂ (θ0, λ̂T (θ0, s), s). By a second-order Taylor expansion with Lagrange remainder
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and using (2KT + 1)
∑T

t=1 ρ2(λ̇(s)′gtT (θ0, s))gtT (θ0, s)gtT θ0, s)′/T
p→ −Ω(s),

1
2KT + 1

P̂ (θ0, λ̂T (θ0, s), s) = −
(

λ̂T (θ0, s)
2KT + 1

)′

ĝT (θ0, s)

+

(
λ̂T (θ0, s)
2KT + 1

)′( T∑
t=1

ρ2

(
λ̇T (s)′gtT (θ0, s)

)
gtT (θ0, s)gtT (θ0, s)′/T

)
λ̂T (θ0, s)/2

= ĝT (θ0, s)′Ω(s)−1ĝT ((θ0, s)− ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s)/2 + op(1)

= ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s)/2 + op(1)

w.p.a.1 where the second equality holds by 1
2KT +1 λ̂T (θ0, s) = −Ω(s)−1ĝT (θ0, s) + op(1). The asymptotic dis-

tribution of the statistic 2T
2KT +1 P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then asymptotically bounded for all s ∈ S by the

asymptotic distribution of T ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s). By using Lemma 6.1, the result under the null fol-

lows. Lemma 6.2 yields the asymptotic distribution under the alternative. The equivalence for the statistic

LMR
T (θ̃T (s), s) is straightforward to show.

Proof of Theorem 3.5

To prove this theorem, additional assumptions are needed. Let

Σ(β0) = lim
T→∞

var

(
1
T

T∑
t=1

(gt(β0)′, vec(Gt(β0))′)

)′

a (q + qr)× (q + qr) positive semi-definite symmetric matrix and

Σ(β0) =

[
Ω(β0) ΩgG(β0)

ΩGg(β0) ΩGG(β0)

]

where ΩgG(β0) = ΩGg(β0)′ is a (q × qr) matrix and ΩGG(β0) is a (qr × qr) matrix.

We define the estimators under the null of no structural change

Σ̂1T (β0, s) =
2KT + 1

[Ts]

[Ts]∑
t=1

(gt(β0)′, vec(Gt(β0))′)
′ (gt(β0)′, vec(Gt(β0)− EGtT (β0))′)

Σ̂2T (β0, s) =
2KT + 1
T − [Ts]

T∑

t=[Ts]+1

(gt(β0)′, vec(Gt(β0))′)
′ (gt(θ0)′, vec(Gt(β0)− EGtT (β0))′) .

Assumption 6.8′. Under the true value of the parameters θ0, sups∈S ‖Σ̂iT (β0, s) − Σ(β0‖ p→ 0 with S whose

closure lies in (0, 1) for i = 1, 2.

Assumption 6.3′′. Under the true value of the parameters θ0, {g (xTt, β0) , vec (G (xTt, β0)− EG (xTt, β0)) :

t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-mixing with mixing coefficients
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∑∞
j=1 j2α(j)(ν−1)/ν < ∞ for some ν > 1 with supt≤T,T≥1E‖g (xTt, β0) ‖d < ∞ and supt≤T,T≥1E‖G (xTt, β0) ‖d <

∞ for some d > max
(
4ν, 2η

η−1

)
.

Assumptions 6.3′′ and 6.8′ guarantee for the restricted partial-sample GEL that

Ω̂Gg,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) gtT (β0)′
p→ sΩGg(β0), (6)

Ω̂Gg,2T (β0, s) =
2K + 1

T

T∑

t=[Ts]+1

vec (GtT (β0)) gtT (θ0)′
p→ (1− s)ΩGg(β0), (7)

and

Ω̂GG,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) vec (GtT − EGtT (β0))
′ p→ sΩGG(β0),

Ω̂GG,2T (β0, s) =
2K + 1

T

T∑

t=[Ts]+1

vec (GtT (β0)) vec (GtT (β0)− EGtT (β0))
′ p→ (1− s)ΩGG(β0).

Lemma 6.1 can be shown for the derivatives of the smoothed moment conditions under Assumptions 6.1,

6.2, 6.3′′ and 6.8′ as shown for the smoothed moment conditions. Thus, the asymptotic distribution of the

derivatives of the centered smoothed moment conditions under the null is given by:

1√
T

[Ts]∑
t=1

vec (GtT (β0)− EGtT (β0)) ⇒ ΩGG(β0)1/2Bqr(s) (8)

where Bqr(s) is a qr-dimensional vector of standard Brownian motion. Using Lemma 6.1, this yields for the

whole vector (gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′

T−1/2

[Ts]∑
t=1

(gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′ ⇒ Σ(β0)1/2Bq+qr(s) (9)

where BG(s) is a ((q + qr)× 1)-vector of standard Brownian motion.

We also need the following assumptions:

Assumption 6.13. υ(s) ∈ Υ̂T (s) where Υ̂T (s) = {υ(s) : ‖υ(s)‖ ≤ D
(
T/((2KT + 1)2

)−ζ} for some D > 0 with
1
2 > ζ > 1

d(1−1/η) .

Assumption 6.14. Suppose Assumption 6.9 but for ∂g(xt, β)/∂βi for i = 1, . . . , r.

The Assumption 6.13 guarantees that Lemma 6.3 holds for the objective function defined with K1t(β, s) and

K1t(β, s).
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The proof is based on the following bound for all s ∈ S,

PK(θ̃K,T (s), υ̂(θ̃K,T (s)s), s) ≤ PK(θ0, υ̂(θ̃K,T (s)s), s) ≤ sup
υ(s)∈Υ̂T (θ0,s)

PK(θ0, υ(s), s). (10)

Let υ̂T (θ0, s) = arg maxυ(s)∈ΥT (θ0,s) P̂K(θ0, υ(s), s). The corresponding FOC for the first subsample are

1
T

[Ts]∑
t=1

ρ1 (υ̂1T (β0, s)′K1tT (β0, s)) K1tT (β0, s) = 0

have to hold at the true value (β0, 0) w.p.a.1. Let υ̇1T (β0, s) = τ υ̂1T (β0, s), 0 ≤ τ ≤ 1 and expanding the FOC

in υ1T (β0, s) around 0 yields

0 = −
[Ts]∑
t=1

K1tT (β0, s) +


(2KT + 1)

[Ts]∑
t=1

ρ2(υ̇1T (β0, s)′K1tT (β0, s)K1tT (β0, s)′/T


 (2K + 1)−1υ̂1T (β0, s)

= −
[Ts]∑
t=1

K1tT (β0, s)−
(
D̂1T (β0, s)′Ω̂1T (β0, s)−1D̂1T (β0, s)

)
(2K + 1)−1υ̂1T (β0, s) + op(1)

by sups∈S max1≤t≤T |ρ2 (υ̇1T (θ0, s)′K1tT (θ0, s)) − ρ2(0)| p→ 0 which holds by imposing Assumptions 6.3′′ and

6.13.

Therefore,

1
(2K + 1)

υ̂1T (β0, s) = −
(
D̂1T (β0, s)′Ω̂1T (β0, s)−1D̂1T (β0, s)

)−1

D̂1T (β0, s)′Ω̂1T (β0, s)−1 1
T

[Ts]∑
t=1

gtT (β0, s) + op(1)

w.p.a.1. The derivation for the FOC for the second subsample 1
T

∑T
t=[Ts]+1 ρ1 (υ2T (β0, s)′K2tT (β0, s)) K2tT (β0, s) =

0 is the same and we obtain:

1
(2K + 1)

υ̂2T (β0, s) = −
(
D̂2T (β0, s)′Ω̂2T (β0, s)−1D̂2T (β0, s)

)−1

D̂2T (β0, s)′Ω̂2T (β0, s)−1 1
T

T∑

t=[Ts]+1

gtT (β0) + op(1).

Now define for the vector θ = (β′, β′)′:

D̂T (θ, s) =

[
D̂1T (β, s) 0

0 D̂2T (β, s)

]
∈ R2q×2r,

KT (θ, s) =

[
1
T

∑[Ts]
t=1 K1tT (β, s)

1
T

∑T
t=[Ts]+1 K2tT (β, s)

]
∈ R2r×1

and

Ω(θ, s) =

[
Ω1(β, s) 0

0 Ω1(β, s)

]
∈ R2q×2q.
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By a second-order Taylor expansion of PK(θ0, υ̂T (θ0, s), s) around 0 with υ̇T (θ0, s) = τ υ̂T (θ0, s), 0 ≤ τ ≤ 1,

1
2KT + 1

PK(θ0, υ̂(θ0, s), s) = −
(

υ̂T (s)
2KT + 1

)′
KT (θ0, s)

+
(

υ̂T (θ0, s)
2KT + 1

)′( T∑
t=1

ρ2(υ̇T (s)′KtT (θ0, s)KtT (θ0, s)KtT (θ0, s)′/T

)
υ̂T (θ0, s)/2

= KT (θ0, s)′
(
D̂T (θ0, s)′Ω̂(θ0, s)−1D̂T (θ0, s)

)−1

KT ((θ0, s)−

KT (θ0, s)′
(
D̂T (θ0, s)′Ω̂(θ0, s)−1D̂T (θ0, s)

)−1

KT ((θ0, s)/2 + op(1)

= KT (θ0, s)′
(
D̂T (θ0, s)′Ω̂(θ0, s)−1D̂T (θ0, s)

)−1

KT ((θ0, s)/2 + op(1) (11)

w.p.a.1 where the second equality holds by

1
2KT + 1

υ̂T (θ0, s) = −
(
D̂T (θ0, s)′Ω(θ0, s)−1D̂T (θ0, s)

)−1

D̂T (θ0, s)′Ω(θ0, s)−1ĝT (θ0, s) + op(1)

and KT (θ0, s) = D̂T (θ0, s)′Ω̂(θ0, s)−1ĝT (θ0, s).

Now, let D̂1T (β0, s) =
[
D̂1,1T (β0, s), D̂2,1T (β0, s), . . . , D̂r,1T (β0, s)

]
with D̂i,1T (β, s) =

1
T

∑[Ts]
t=1 ρ1(λ̂1T (β, s)′gtT (β))Gi,tT (β, s) for i = 1, . . . , p and respectively for D̂2T (β0, s). By a Taylor expansion

of D̂i,1T (β0, s) and D̂i,2T (β0, s) around λ̂1T (β0, s) = 0 and λ̂2T (β0, s) = 0 respectively yields

D̂i,1T (β0, s) = − 1
T

[Ts]∑
t=1

Gi,tT (β0) +
2K + 1

T

[Ts]∑
t=1

Gi,tT (β0)gtT (β0)′Ω̂1T (β0, s)−1 1
[Ts]

[Ts]∑
t=1

gtT (β0) + op(1)

D̂i,2T (β0, s) = − 1
T

T∑

t=[Ts]+1

Gi,tT (β0) +
2K + 1

T

T∑

t=[Ts]+1

Gi,tT (β0)gtT (β0)′Ω̂2T (β0, s)−1 1
T − [Ts]

T∑

t=[Ts]+1

gtT (β0) + op(1)

using 1
2KT +1 λ̂1T (β0, s) = −Ω̂1T (β0, s)−1 1

[Ts]

∑[Ts]
t=1 gtT (β0) + op(1) and 1

2KT +1 λ̂2T (β0, s) =

− Ω̂2T (β0, s) 1
T−[Ts]

∑T
t=[Ts]+1 gtT (β0) + op(1) with sups∈S max1≤t≤T |ρ2(λ̂iT (β0, s)′gtT (β0)) − ρ2(0)| p→ 0 for

i = 1, 2.

Using (6), (7), (8), (9), Lemma 6.1 and with G(β0) = limT→∞
[
T−1

∑T
t=1 GtT (β0)

]
, we obtain that

[
Iq 0

− 2K+1
T

∑[Ts]
t=1 vec (GtT (β0)) gtT (β0)′Ω̂1T (β0)−1 Iqr

]
×

[
1√
T

∑[Ts]
t=1 gtT (β0)

1√
T

∑[Ts]
t=1 vec (GtT (β0)− EGtT (β0))

]

=




1√
T

∑[Ts]
t=1 gtT (β0)

−√T
(
D̂1T (β0, s)− sG(β0)

)

 ⇒

[
Ω(β0)1/2Bq(s)

ΩD(β0)1/2B2.1(s)

]

with ΩD(β0)1/2B2.1(s) = ΩGG(β0)1/2Bqr(s) − ΩGg(β0)Ω(β0)−1Ω(β0)1/2Bq(s), ΩD(β0) =

ΩGG(β0) − ΩGg(β0)Ω(β0)−1ΩGg(β0) and B2.1(s) is independent of Bq(s). This result is true for any value
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of G(β0). Thus, G(β0) can be of full rank value, weak value such that GT (β0) = C1
T 1/2 for q × r matrix C1 or

G(β0) = 0 in the case of no identification.

This implies that

√
T

(
D̂1T (β0, s)− sG(β0)

)
⇒ −ΩD(β0)1/2B2.1(s)

and

√
T

(
D̂2T (β0, s)− (1− s)G(β0)

)
⇒ −ΩD(β0)1/2(B2.1(1)−B2.1(s)).

Since D̂1T (β0, s) and D̂2T (β0, s) are respectively independent of 1
T

∑[Ts]
t=1 gtT (β0) and 1

T

∑T
t=[Ts]+1 gtT (β0)

this yields

(
D̂1T (β0)′Ω̂1T (β0)−1D̂1T (β0)

)−1/2

D̂1T (β0)′Ω̂1T (β0)−1 1√
T

[Ts]∑
t=1

gtT (β0) ⇒ Br(s) (12)

and

(
D̂2T (β0)′Ω̂2T (β0)−1/2D̂2T (β0)

)−1

D̂2T (β0)′Ω̂2T (β0)−1 1√
T

T∑

t=[Ts]+1

gtT (β0) ⇒ Br(1)−Br(s) (13)

where Br(s) is a r-vector of standard Brownian motion.

By the inequality (10),

2T

2K + 1
PK(θ̃K,T (s), υ̂(θ̃K,T (s)s), s) ≤ 2T

2K + 1
PK(θ0, υ̂(θ0, s), s)

and using (11), (12) and (13)

2T

2K + 1
PK(θ0, υ̂(θ0, s), s) = [Ts]

1
[Ts]

[Ts]∑
t=1

gtT (β0)Ω̂1T (β0, s)−1/2P1T,Ω−1/2D̂(β0, s)Ω̂1T (β0, s)−1/2 1
[Ts]

[Ts]∑
t=1

gtT (β0)

+ [T − Ts]
1

[T − Ts]

T∑

t=[Ts]+1

gtT (β0)Ω̂2T (β0, s)−1/2P2T,Ω−1/2D̂(β0, s)Ω̂2T (β0, s)−1/2

× 1
[T − Ts]

T∑

t=[Ts]+1

gtT (β0) + op(1)

⇒ Br(s)′Br(s)
s

+
[Br(1)−Br(s)]

′ [Br(1)−Br(s)]
1− s

with P1T,Ω1/2D̂(β0, s) = Ω̂1T (β0, s)−1/2D̂1T (β0, s)
(
D̂1T (β0, s)′Ω̂1T (β0, s)−1/2D̂1T (β0, s)

)−1

D̂1T (β0, s)′Ω̂1T (β0, s)−1/2

and P2T,Ω1/2D̂(β0, s) = Ω̂2T (β0, s)−1/2D̂2T (β0, s)
(
D̂2T (β0, s)′Ω̂2T (β0, s)−1/2D̂2T (β0, s)

)−1

D̂2T (β0, s)′Ω̂2T (β0, s)−1/2.

The result follows directly under the null. The derivation under the alternative can be easily obtained.
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Table 1: Data Generating Processes

HS
0 HI

A HO
A

DGP1 β1 = β2 = 0 α = 0

DGP2 β1 = β2 = 0.4 α = 0

DGP3 β1 = β2 = 0.8 α = 0

DGP4 β1 = 0, β2 = 0.4 α = 0

DGP5 β1 = 0, β2 = 0.8 α = 0

DGP6 β1 = 0.4, β2 = 0.8 α = 0

DGP7 β1 = β2 = 0.4 α = 0.5

DGP8 β1 = β2 = 0.4 α = 0.9

DGP9 β1 = β2 = 0.4 α = −0.5

DGP10 β1 = β2 = 0.4 α = −0.9
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Table 2: Rejection Frequencies for Tests of Structural Change in the Parameters

DGP Size (%) supW aveW expW supLR aveLR expLR

DGP1 1 0.0275 0.0190 0.0275 0.0220 0.0195 0.0240

5 0.0855 0.0725 0.0815 0.0825 0.0730 0.0835

10 0.1450 0.1225 0.1465 0.1435 0.1290 0.1470

DGP2 1 0.0285 0.0150 0.0275 0.0235 0.0150 0.0225

5 0.0880 0.0735 0.0900 0.0845 0.0720 0.0875

10 0.1510 0.1295 0.1500 0.1525 0.1375 0.1550

DGP3 1 0.0320 0.0120 0.0195 0.0170 0.0120 0.0145

5 0.0980 0.0635 0.0825 0.0715 0.0675 0.0750

10 0.1550 0.1300 0.1440 0.1425 0.1290 0.1390

DGP4 1 0.4840 0.5205 0.5420 0.4840 0.5295 0.5475

5 0.6915 0.7430 0.7500 0.6930 0.7510 0.7510

10 0.7860 0.8280 0.8300 0.7875 0.8365 0.8325

DGP5 1 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DGP6 1 0.7060 0.7475 0.7655 0.6950 0.7435 0.7625

5 0.8590 0.8910 0.8955 0.8590 0.8975 0.9000

10 0.9075 0.9345 0.9365 0.9140 0.9385 0.9370

DGP7 1 0.2895 0.2215 0.3045 0.1845 0.1905 0.2205

5 0.4605 0.4170 0.4795 0.3630 0.3855 0.4065

10 0.5705 0.5275 0.5805 0.4915 0.5015 0.5190

DGP8 1 0.4425 0.3800 0.4720 0.3575 0.3545 0.4000

5 0.6160 0.5960 0.6460 0.5530 0.5760 0.5990

10 0.7140 0.6900 0.7305 0.6595 0.6855 0.6950

DGP9 1 0.2255 0.1275 0.2110 0.1120 0.0955 0.1240

5 0.3660 0.2805 0.3640 0.2650 0.2415 0.2790

10 0.4640 0.4015 0.4650 0.3770 0.3665 0.3960

DGP10 1 0.4530 0.2825 0.4410 0.2150 0.1425 0.2130

5 0.5960 0.4890 0.5920 0.4205 0.3340 0.4200

10 0.6790 0.6050 0.6790 0.5540 0.4755 0.5385
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Table 3: Rejection Frequencies for Tests of Structural Change in the Overidentifying Restrictions

DGP Size (%) supO aveO expO supOg aveOg expOg supLMO aveLMO expLMO

DGP1 1 0.0020 0.0075 0.0050 0.0205 0.0195 0.0215 0.0055 0.0080 0.0050

5 0.0210 0.0420 0.0390 0.0735 0.0665 0.0710 0.0305 0.0455 0.0390

10 0.0595 0.1005 0.0865 0.1300 0.1260 0.1390 0.0730 0.1020 0.0925

DGP2 1 0.0040 0.0085 0.0085 0.0245 0.0155 0.0240 0.0090 0.0080 0.0090

5 0.0270 0.0450 0.0440 0.0870 0.0645 0.0785 0.0345 0.0455 0.0495

10 0.0595 0.0955 0.0865 0.1370 0.1240 0.1365 0.0835 0.1015 0.0975

DGP3 1 0.0055 0.0090 0.0075 0.0260 0.0175 0.0260 0.0080 0.0095 0.0095

5 0.0295 0.0490 0.0440 0.0815 0.0690 0.0785 0.0405 0.0455 0.0500

10 0.0630 0.1035 0.0890 0.1445 0.1280 0.1445 0.0810 0.1045 0.1020

DGP4 1 0.0050 0.0070 0.0080 0.0295 0.0175 0.0285 0.0090 0.0090 0.0120

5 0.0360 0.0460 0.0445 0.0965 0.0720 0.0935 0.0480 0.0475 0.0545

10 0.0810 0.0985 0.1075 0.1700 0.1370 0.1660 0.1005 0.1105 0.1160

DGP5 1 0.1605 0.0805 0.1725 0.2965 0.1435 0.2915 0.1620 0.0835 0.1805

5 0.3805 0.2630 0.4040 0.5195 0.3475 0.5040 0.3935 0.2670 0.4155

10 0.5305 0.4300 0.5420 0.6415 0.4990 0.6195 0.5370 0.4345 0.5470

DGP6 1 0.0085 0.0110 0.0145 0.0425 0.0230 0.0410 0.0150 0.0150 0.0210

5 0.0505 0.0515 0.0615 0.1150 0.0750 0.1030 0.0650 0.0520 0.0675

10 0.0925 0.1055 0.1140 0.1865 0.1455 0.1760 0.1165 0.1140 0.1280

DGP7 1 0.0425 0.1725 0.1290 0.5640 0.5610 0.6075 0.0685 0.1540 0.1330

5 0.2380 0.5415 0.4740 0.7450 0.7705 0.7860 0.2525 0.5310 0.4780

10 0.4380 0.7255 0.6790 0.8305 0.8560 0.8635 0.4645 0.7240 0.6860

DGP8 1 0.0850 0.3275 0.2375 0.7665 0.7975 0.8070 0.1635 0.3150 0.2845

5 0.3620 0.7540 0.6755 0.8855 0.9185 0.9070 0.4325 0.7540 0.6865

10 0.5875 0.8820 0.8410 0.9220 0.9525 0.9525 0.6390 0.8960 0.8605

DGP9 1 0.0960 0.4185 0.2975 0.8620 0.8810 0.8980 0.1895 0.3550 0.3220

5 0.4575 0.8230 0.7810 0.9495 0.9640 0.9645 0.4855 0.8040 0.7525

10 0.7150 0.9445 0.9245 0.9740 0.9830 0.9825 0.7105 0.9280 0.9060

DGP10 1 0.1140 0.6610 0.4790 0.9935 0.9955 0.9960 0.3950 0.5205 0.5165

5 0.6080 0.9780 0.9470 0.9985 0.9995 0.9995 0.7060 0.9205 0.8955

10 0.8645 0.9970 0.9925 0.9995 1.0000 1.0000 0.8905 0.9755 0.9705
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