
Page 1 of 19 

 
 
 

SOFTWARE DEVELOPMENT STANDARDS 
 
 

PURPOSE The purpose of this document is to support and outline in detail 
the requirements of the Software Development Policy.   

Effective development processes are critical to the success of 
projects.  This Software Development Standard provides: 

 Development standards for all stages of the System 
Development Life Cycle 

 Minimum requirements for software development 
activities, deliverables and acceptance sign-off. 

 

Scope These requirements are mandatory and must be adhered to by 
all employees (i.e., faculty, staff), consultants and / or 
contractors involved in the development or modification of 
mission critical applications that support Brock University at an 
enterprise level. 

 

Requirement levels The following wording conventions are used in this document. 

Term Meaning 
Must This requirement is mandatory, it is not optional. 
May If there are options provided, the implementer is 

able to choose one or more of the options 
outlined.  At least 1 option must be selected. 

Should If business rules countermand a standard 
practice, deviating from the standard must be 
approved by management as a modification to the 
standard practice. 

 

 



Software Development Standards   Page 2 of 19 

Definitions, 
Acronyms and 
Abbreviations 

Agile Method: 
A software development method.  Most agile methods break 
tasks into small increments with minimal planning and do not 
directly involve long-term planning.  Iterations are short time 
frames that typically last from one to four weeks.  Every 
iteration involves a cross-functional team working in all steps:  
planning, requirements/analysis, design, coding and testing.  At 
the end of the iteration, a working product is demonstrated to 
stakeholders.  This minimizes overall risk and allows the project 
to adapt to changes quickly.  Iteration might not add enough 
functionality to be useable on its own, but the goal is to have an 
available release at the end of each iteration.  Multiple 
iterations might be required to release a product or new 
features. 
 

 

AODA: 
Accessibility for Ontarians with Disabilities Act – legislation. 

Application: 
Computer programs, procedures, rules and associated 
documentation and data pertaining to the operation of a 
computer system. 
 
Audit or Review (Peer Reviews): 
An independent review to assess compliance with software 
requirements, specifications, baselines, standards, procedures, 
instructions and code. 
 
Baseline: 
A specification or end-product that has been formally reviewed 
and agreed upon.  This becomes the basis for further 
development and must go through change control procedures to 
be altered. 



Software Development Standards   Page 3 of 19 

BSA: 
Business System Analyst. 

CAB (Change Advisory Board): 
A cross functional group representing the various areas in ITS.  
This group reviews proposed changes to infrastructure, software, 
networking, firewall rules, etc.   

Cross-functional team: 
A group of people with different functional and technical 
expertise working together to achieve a common goal. 

DBA: 
Database Administrator 

Evaluation: 
A technique in which requirements, design, code and test results 
are examined in detail by a person or group to detect potential 
problems.  The results are documented. 

Incremental / Iterative Methods: 
Software development methods.  This method breaks the project 
requirements into incremental changes (phases or sprints).  The 
series of changes/releases is referred to as “increments”, with 
each increment providing more functionality to the customers. 
After the first increment, a core product is delivered, which can 
already be used by the customer.  Based on customer feedback, 
a plan is developed for the next increments, and modifications 
are made accordingly. 
 

 

Maintenance: 
To repair, change or enhance software/application. 



Software Development Standards   Page 4 of 19 

Mission Critical: 
A system or application whose failure will result in the failure of 
University operations. 

MoSCoW method: 
A technique used to reach a common understanding with 
stakeholders on the importance they place on the delivery of 
each requirement. Also called the MoSCow prioritization or 
analysis.   

Letter Meaning Description 
M Must The requirement MUST be satisfied in the 

final solution for the final solution to be 
considered a success. 
 

S Should A high priority item that should be included 
in the solution if possible.  Often a critical 
requirement that may be satisfied in other 
ways if strictly necessary. 
 

C Could The requirement is considered desirable but 
not necessary.  It should be included in the 
solution if time and resources permit. 
 

W Won’t  
 

A requirement that stakeholders have 
agreed will not be implemented in a release 
but may be considered for the future.   
 

 
Product: 
A product is the tangible result of any process or work group.  
This includes (but is not limited to) purchased software products, 
components, code, services and deliverables. 
 
Project Team: 
A group of people (may include various departments) who 
collaborate and work together to deliver a software product. 
 
Regression Testing: 
The process of testing changes to software to ensure the changes 
have not adversely affected current system functionality. 
 
Sign-off: 
The declaration that the product has met expectations and been 
accepted by the governing body of the project. 
 



Software Development Standards   Page 5 of 19 

Software Development Lifecycle (SDLC): 
A systematic approach to creating software applications.  This 
cycle typically includes the following seven phases: 

1. Requirements gathering - collection of business 
requirements / needs 

2. Analysis - Business and requirements analysis  
3. Design - Architecture and application design 
4. Coding – Development/programming 
5. Testing – Quality assurance, bug fixes, error correction 
6. Implementation – Deploying (releasing) the application 

into the production environment for business use 
7. Post Implementation – maintenance and review. 

 
System: 
A set of programs which perform all functionality defined within 
a software application. 

Subsystem: 
A functionally related to a subset of the system. 

User Acceptance Testing (UAT): 
UAT testing is performed by the functional business groups that 
will be using the software in production.  It is performed on a 
test/ quality assurance site that is separate from the production 
environment.   

Walkthrough: 
A review process in which an individual(s) leads their peers 
through their work product.  This is used to evaluate 
requirements, specifications, code, documentation, etc. 

Waterfall Method: 
A software development method.  Waterfall is a sequential 
design process.  Each phase in the lifecycle must be fully 
completed, documented and agreed upon prior to moving 
forward to the next phase. 
 

 



Software Development Standards   Page 6 of 19 

References and 
Related Documents 

 
 

Version Title Document Location Date 
Accessed 

dd/mm/yyyy 
2.1 Standards for dotNet \\campus.brocku.local\carddfs\develop\documentation\ 

standards and checklists  
10/23/2014 

1.0 WCAG2Checklist.pdf \\campus.brocku.local\carddfs\develop\documentation\ 
standards and checklists  

10/23/2014 

 SQL templates for 
stored procedure 
creation 

\\campus.brocku.local\carddfs\develop\SQL Queries\ 
TEMPLATES  

11/11/2014 

1.2 Production 
Emergency Release 
to BrockDB 

\\campus.brocku.local\carddfs\develop\documentation\ 
standards and checklists  

11/11/2014 

1.0 Requirements 
Template 

\\campus.brocku.local\carddfs\develop\documentation\ 
standards and checklists 

11/11/2014 

 

 

Versioning and/ or 
Change Management 

Requested revisions to these Standards are to be submitted to 
the Application Architect for approval. 

 

General Standards All software development projects, including maintenance 
projects, must follow these standards.    

Objectives for application development include: 
 Clear definition of purpose 
 Simplicity of use 
 Ruggedness (difficult to misuse, kind to errors 

encountered)  
 Delivered on time and when needed 
 Reliability 
 Efficiency (fast enough for the purpose it was created) 
 Minimum development cost 
 Conform to standards 
 Clear, accurate and precise user documentation 
 Clear, accurate and precise technical documentation. 

All production systems must have designated Owners and 
Custodians for the critical information they process in order to 
identify requirements and verify the final deliverables with 
signoff. 

There must be a separation between the production, 
development and test environments.  This will ensure that 
security is rigorously maintained for the production system, 



Software Development Standards   Page 7 of 19 

while the development and test environments can maximize 
productivity with fewer security restrictions. Where these 
distinctions have been established, development and test staff 
must not be permitted to have access to production systems. 

All applications are reviewed at predetermined checkpoints of 
the SDLC by the Application Architect or their designate.  Any 
deviations are reported and corrective action is determined 
prior to the application being released to production. 

Electronic authorization indicating Standards have been met is 
required before a new or modified application can be released 
to production.  

Throughout the entire project, special consideration must be 
given on an ongoing basis to capturing and implementing 
security and privacy requirements. The post-implementation 
review must reflect this. 

 

Requirements 
Gathering 

Document a clear statement of the current situation outlining 
problems and opportunities the software will address. 

Review existing systems/processes.  

Identify and document the issues with the current data/ 
system/ process. 

Document:  
 New business needs   
 New assumptions since initial project assessment 
 Items that will not be solved with this software 

(outstanding issues) 
 Integration points with other software 
 Data storage requirements 
 Data retention requirements 
 Cross-functional support/input required to proceed with 

this project/request 
 Legislative/contractual/security/privacy/access 

requirements 
 Confidential data, access rights to this data and 

compliance requirements for this data (e.g., payment 
requirements must meet PCI compliance; student home 
address must adhere to FIPPA rules, etc.) 

 Roles required for security. 



Software Development Standards   Page 8 of 19 

 Logging requirements (i.e., what needs to be captured in 
audit logs other than who updated, when updated, etc.). 

 Reporting requirements. 
 Training requirements. 

Walkthrough and review of requirements: 
 Walkthrough with client 
 Walkthrough with peer. 

Obtain sign-off and approval from client to ensure there is 
agreement on the requirements as documented. 

Deliverables: 
 Requirements document.   

 

Analysis Evaluate the documented requirements.  During the evaluation 
process the following criteria must be considered and results of 
the evaluation documented: 

 Requirement can be traced to business need     
 Requirement is consistent with business need 
 Testability of the requirements 
 Can the requirement be implemented given the current 

architecture?  

Establish and document software requirements:  
 Functional and capability specification, including 

performance and design characteristics and 
environmental conditions under which the software is to 
perform 

 Interfaces external to the software module/ component/ 
service 

 Testing requirements 
 Privacy and security specifications 
 Data definition and database requirements 
 User acceptance and implementation requirements for 

the delivered application, including: 
o Will data validation from loads/migrations be 

required? 
o Test results required for quality acceptance 
o Test results required for performance acceptance 
o How will ease of use/efficiency be measured? 

Operation and execution requirements:    
 How often will the application be accessed?   



Software Development Standards   Page 9 of 19 

 Does this application rely on the existence of another 
module/ data?     

 Storage needs and potential growth   
 What tools or technologies will users need to access the 

system (e.g., VPN, special licensing, etc.)? 
 Maintenance requirements.     

Walkthroughs and reviews:  
 Architecture checkpoint review 
 Internal peer reviews.  

 

Design Document the following: 
 Identify tasks, pages, reports, procedures and functions 
 Identify common modules that will be used 
 Define the control logic for each task and unit  
 Identify database and access requirements  
 Identify feeds into the system module (including those 

coming from other sources)   
 Identify exports and outputs from this system/module   
 Assess performance requirements  
 Define backup / recovery requirements  
 Define the "hows" for each process rule and edit item 

identified in the analysis.  These will become the logic 
descriptions in detailed design  

 Define exception handling  
 Conduct session(s) with architects (application and data 

architects) to review and flesh out design requirements 
 Conduct final design walkthrough 
 Document testing considerations:  these requirements 

include identifying data files accessed, tests and startup 
considerations 

 Define how the user will access the system/modules 

Deliverables: 
 Design document 
 Project work schedule 
 Coding specifications to be given to developers 
 Transitional documentation for operations group (format 

TBD). 

 



Software Development Standards   Page 10 of 19 

Coding/ 
Development 

SQL and .Net are the standard development platforms for 
enterprise applications. 

Stored procedures/functions are required for all Database 
access (server side).  Client side coding is kept to a minimum 
and only used if approved by Application Architect and Business 
Systems Analyst.  This is a security measure used to prevent 
infusion attacks. 

All code must be written with the following goals in mind:    
 Maintainability; adaptable to cope with changing 

requirements.  The following questions will help judge 
the maintainability code: 

o Can I find the code that is related to a specific 
problem or change? 

o Can I understand the code?  Can I explain the 
rationale behind it to someone else? 

o Is it easy to change the code?  Is it easy for me to 
determine what I need to change?    

o Can I make a change with only a low risk of 
breaking existing features? 

o If I do break something, is it quick and easy to 
detect and diagnose the problem? 

 Dependability.  Does the code meet its specification, 
i.e., "correct output for each possible input"  

 Efficiency. Is the program efficient enough for the 
environment in which it is used? 

 Usability.    

New stored procedures must include all the elements in the SQL 
template.  Templates are located in the department share (see 
References and Related Documents for location). 

Functions must be authorized and created by a DBA.  Functions 
can be resource intensive depending on use so require a DBA to 
ensure efficiency and that their use is warranted. 

Triggers must be authorized and created by a DBA.  Triggers can 
be resource intensive depending on use so require a DBA to 
ensure efficiency and that their use is warranted.  

User controls must be created/maintained by a Development 
Team Lead(s). 

Comments/tracking:  each code module must contain: 
 Name of the module  



Software Development Standards   Page 11 of 19 

 Purpose of the module  
 Brief description of the module  
 Original author 
 Original implementation date 
 Change control list which identifies: 

o Date of change 
o Who authored the change 
o Footprint ticket or project number that initiated 

the request for change 
o Description of change 
o Sample execute statement 
o In-line comment of variables at declaration to 

identify purpose and use  
o In-line comment blocks to describe required 

functionality for code when logic is complicated or 
more involved than usual.  This adds to 
maintainability, allowing others to quickly 
understand what is happening in the logic. 

Create / update unit tests documentation (at minimum) for 
modules/ features. 

Create / update help documentation associated with the 
change to the module/ feature. 

Create/update technical documentation associated with the 
change to the module/ feature. 

Naming conventions must be adhered to. 

Code portability is a goal.  Hard-coding is to be avoided 
whenever possible (it is recognized that in some cases this is 
unavoidable).  Should hard-coding be unavoidable, it must be 
identified and reviewed with the Business Analyst for approval.  
The approval must be documented as part of the project 
documentation. 

All development must complete a code walkthrough prior to 
being promoted to QA/Production.  Walkthroughs should 
include:  BSA  and a Team Lead.  DBAs should be included for 
complex SQL or when processing times need to be reviewed. 

 

AODA requirements All new systems/pages/reports implemented must adhere to 
AODA standards.  An AODA checklist exists (refer to the 



Software Development Standards   Page 12 of 19 

References and Related Documents section above for the 
checklist location).    

 

SQL & .NET coding 
standards 

Templates exist for SQL procedures (insert, update, delete, 
select).  These templates include code that must exist in all 
SQL procedures used for data retrieval/update.  Application 
session information is required to identify who is retrieving/ 
updating/ deleting data.  Procedures used to fill screen drop 
down lists do not require session information when the data 
retrieved is not sensitive.  For example, a procedure which 
returns a list of valid academic sessions or valid course 
durations or valid subject codes would not need to have session 
information as this is public information.   

For batch procedures special coding is used to identify a batch 
run. 

 

Testing Each software change requires testing.  The degree of testing 
will vary depending on the size and complexity of the change. 

Each test must be supported by documentation.  For simple, 
low risk changes, this may take the form of screen shots 
captured and put into a Word document.   

At minimum, there must be a document identifying what was 
tested and signed off by an analyst and the primary user 
indicating the change was successfully reviewed and tested 
prior to implementing to QA and production. 

Testing for AODA compliance is required for pages/reports. 

Consult/Include Operations staff in the test phase for transition 
training. 

 

Document your test Identify the type of test you are performing: 
 Unit testing 
 Regression testing 
 Load testing 
 User acceptance testing. 



Software Development Standards   Page 13 of 19 

Identify the functionality/features being tested.  Identify the 
functionality/ features NOT tested for clarity. 

Identify who is required to participate in the testing their role 
in testing.  Consider:  

 Analyst 
 Developer 
 Client/user 
 Other (e.g., DBA,  ISSG,  Client Services). 

Identify what needs to be in place before testing can begin:  
 Is there specific hardware that is required, or a specific 

configuration that needs to exist? 
 Is there software required for this testing? 
 Does data need to be loaded/set up? 

Identify the Pass/Fail criteria for each item tested:  
 Steps / schedule of activities:  identify tasks and 

dependencies between the tasks. 

Deliverables: 
 Completed AODA checklist. 
 Test logs:  Show items tested with inputs and resulting 

outputs.  This should be derived from the test cases that 
were identified and documented in the 
coding/development phase. 

 Issues Log:  Record issues encountered during testing and 
corrective action taken. 

 Summary:   brief summary of results, metrics and any 
observations during testing, including participant input. 

 Approvals and sign-offs: 
o To validate the system/change has been tested 

thoroughly, sign-offs from the Business Systems 
Analyst, system owner and any other testers are 
required. 

 

Document 
implementation plan 

Clearly define communication plan: 

 Communication plan to user community of new 
functionality 

 Communication plan internally to ITS groups required 
to support the product.  Identify and communicate 
what constitutes post-implementation support vs. 



Software Development Standards   Page 14 of 19 

operational support to the project team and users of 
the system.  This includes but is not limited to: 
o Change Advisory Board (CAB) need to be notified 

of the impending implementation (when and what 
is impacted) 

o Operations group for ongoing support of the 
product 

o ISSG to ensure proper backup/recovery processes 
are in place when production is live 

o Client services, so they are aware of new/altered 
functionality and potential impact to the Brock 
University community.  

Clearly identify dates for implementation (i.e., if phases exists, 
each phase’s implementation date). 

Clearly identify tasks required to get the product implemented: 
 Who is required to perform each task 
 The order in which tasks must be completed, including 

all dependencies 
 Identify risks:  

o Involved with the implementation  
o If the implementation is not performed 
o Contingency plans associate with the risks. 

Identify all data imports required  
 Are imports to be scripted or manually applied and by 

whom. 

Identify system configuration required before the product can 
be used in a live environment.  Consider: 

 Security roles 
 Secure document/file repositories  
 Scheduled backups. 

Training: 
 What training is required for the users of the system? 
 Who will do the training? 

Validation: 
 Who will validate system functionality once the product 

has been implemented? 
 Who will validate data accuracy once the product has 

been implemented? 
 Identify scripts or procedures to perform validations. 



Software Development Standards   Page 15 of 19 

Define the length of the post-implementation phase:  
 4 weeks can be used as a rule of thumb on large 

projects (1 year in duration) or complex projects.  
Adjust accordingly for smaller projects.  For shorter 
duration projects, 1 or 2 weeks should be sufficient 

 The post-implementation phase is supposed to give the 
user time to use all features and functions while 
resources are available to support any unforeseen 
issues.    

 

Go Live Decision Ensure the project team and primary user contact/primary 
stakeholders are in agreement with the implementation plan. 

Ensure the primary user contact/primary stakeholders agree 
with all that has been completed and tested. 

Get agreement to move to production. 

Deliverables: 
 Implementation plan document 
 Transitional documentation for operations group 

(format TBD). 

 

Post-
Implementation 

The post-implementation time is typically referred to as a 
stabilization period.  Resources are still assigned to the project, 
typically with a lower percentage of time allowance, and 
available to make adjustments if issues arise. 

Any work done at this point is to ensure the functionality and 
features that were in scope as outlined in the charter, 
requirements, specification and design are working as 
expected.   

Changes to functionality and features are not part of this 
process, they would require a new project or enhancement 
requests be initiated through regular channels. 

 

Maintain a log of 
issues 

Identify the priority level of each issue (to be done in 
consultation with the system user and project team):    

 Level 1:  assign to team member(s) to resolve as part of 
the post-implementation of the project.  This level can 



Software Development Standards   Page 16 of 19 

be further broken down to prioritize the sequence to 
work on if multiple issues exist with this priority level.    

 Level 2:  create Footprint tickets to be handled as part 
of the Operations team’s regular mandate. 

Ensure Operations team is kept aware of the issues log. 

Prepare a project closing report identifying lessons learned and 
milestones. 

Hold project close meeting and obtain signature on completion 
of report to close project. 

Deliverables: 
 Issues and resolution log. 
 Project close report. 

 

Templates Templates for creating SQL procedures are to be used to create 
new routines.  These templates are shells set up to include 
basic standards such as routine naming convention, comment 
block and application session coding. 

 

Specifications / 
Requirements 
checklist 

☐ Was thought given to the system administration 
functionality? 

☐ Was thought given to error handling? 
☐ Does the specification clearly divide the project into 

phases? 
☐ Do all the phases have verifiable (and preferably 

undisputable) outcomes?  
☐ Does the document refer to any related documents as 

specifically as possible? (Document title, revision, page 
number)? 

 
If there are interfaces: 
☐ Have the necessary data required for interfacing been 

identified? 
 
☐ Is the maximum load (data and system usage) estimated? 
☐ Are the security requirements specified? 
☐ Are the operation and maintenance requirements specified 

(service transition)? 
☐ Are the education/training requirements specified? 



Software Development Standards   Page 17 of 19 

☐ Are the installation/migration requirements specified?  
☐ Has there been a peer-to-peer review (walkthrough)?  
☐ Has the application architect reviewed (walkthrough)? 
☐ Have the requirements/specifications been agreed to and 

signed off by the user?  
☐ Have reporting requirements been clearly identified?  
 
 

Design checklist ☐ Is the design as simple as it can be? 
☐ Are all the functions/features that are listed in the 

requirements covered? 
☐ Are all assumptions, constraints, design decisions and 

dependencies documented? 
☐ Have all reasonable alternative designs been considered, 

including not automating some processes in software?  
☐ Does the design have features or functionality which were 

not specified by the requirements (e.g., are all parts of the 
design traceable back to requirements)? 

☐ Does the design create reusable components if appropriate? 
☐ Are modules well-defined including their functionality and 

interfaces to other modules?  
☐ Interface details:  

☐ Routine name, parameters and their types, return 
type, pre- and post-condition, usage protocol with 
respect to other routines  

☐ File name, format and permissions  
 
☐ Are all major data structures described and justified? 
☐ Are major data structures hidden with access 

functions/procedures? 
☐ Is the database organization and content specified? 
☐ Are all key algorithms described and justified? 
☐ Are all major objects described and justified? 
☐ Is the user interface modularized so that changes in it won't 

affect the rest of the program? 
☐ Is a strategy for handling user input described, i.e., file 

input, manually entered through filters, etc. 
☐ Are key aspects of the user interface defined? 
☐ Are space use estimates and a strategy for space 

management described and justified?   
☐ Is a strategy for handling I/O described and justified? 



Software Development Standards   Page 18 of 19 

☐ Is a coherent error-handling strategy included? 
☐ Are error messages managed as a set to present a clean user 

interface?  
☐ Are necessary buy vs. build decisions included? 
☐ Is this designed to accommodate changes/enhancements in 

future? 
☐ Is any part over- or under-designed? 

☐ Are the major system goals clearly stated? 
☐ Does the complete architecture fit together 

conceptually? 
☐ Is the top-level design independent of the machine 

and language that will be used to implement it?  
 
☐ Are you, as a programmer who will implement the system, 

comfortable with the design? 
☐ Design review and Walkthrough completed with architects 

(data and application) 
☐ Instructions/documentation for transition to Operations 

team 
 
 

Development / 
Coding checklist 

☐ Does every input that comes from an untrusted source (i.e., 
typing into fields on a page, external systems) have 
associated error checking accounted for? 

☐ Are all forms of validation done on the server side?  (only 
allow on the client side on an as needed basis) 

☐ Stored procedures used as the method for data 
validation/delivery 

☐ Is each coding module of sufficient size?  Limit the size for 
readability and maintainability.  Use a 4 page rule of 
thumb.  If the module is larger than 4 pages consider if it 
can be reduced in size or functionality can be split out; also 
consider the following: 
 Size and quantity of data that would need to be passed 

between routines 
 Number of temporary tables that would be needed  
 Any extra database reads/writes that would be required. 

Does the code have the following: 
☐ Proper naming convention 
☐ Purpose is documented 
☐ Brief description 



Software Development Standards   Page 19 of 19 

☐ Original author and date are identified 
☐ Change control area showing date of change, reason, person 

who did it and associated project or ticket number 
☐ Sample execute 
☐ Unit test documented and repeatable 
☐ Sufficient commenting exists throughout the code to make 

it readable and understandable (i.e., maintainable) and the 
comments match the actual code. 

 
 

Testing ☐ AODA requirements have been tested (see AODA checklist) 
☐ Test case(s) have been identified 
☐ Pass/Fail criteria has been identified for each test case 
☐ Page/Report filters 

☐ Data entered in filters is trimmed  
☐ Each valid option is tested for each filter  
☐ Invalid data entered to test error control 
 

☐ Test security by changing roles  
 

 


