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Abstract

We study minimax robust designs for response prediction and extrapolation in biased linear regression models. We extend
previous work of others by considering a nonlinear fitted regression response, by taking a rather general extrapolation space and,
most significantly, by dropping all restrictions on the structure of the regressors. Several examples are discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we investigate the construction of robust designs for both prediction and extrapolation of regression
responses. In our framework the response fitted by the experimenter is a known function of a linear function of unknown
parameters and known regressors. Our designs are robust in that we allow both for imprecision in the specification of
the regression response, and for possible heteroscedasticity.

Consider a regression model

E(Y |x) ≈ h(�Tz(x)), (1)

for a q-dimensional vector x belonging to a bounded design space S and for p regressors z(x)=(z1(x), z2(x), . . . , zp(x))T.
The function h is strictly monotonic with a bounded second derivative. We assume that ‖z(x)‖ is bounded on S. As
indicated in (1), the fitted response is typically acknowledged to be only an approximation. The least squares estimates
�̂ of � and Ŷ =h(zT(x)�) of E(Y |x) are possibly biased if the response is misspecified. In this situation, robust designs
can play an important role in choosing optimal design points x1, . . . , xn ∈ S so that estimates �̂ and Ŷ remain relatively
efficient, with small bias caused by the model misspecification.

The true model may be written

E(Y |x) = h(�Tz(x)) + n−1/2f (x), (2)
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where the contaminant f is unknown but ‘small’. This may be viewed as arising from imprecision in the specification
of h, or it can arise from a misspecified linear term and a two-term Taylor expansion: h(�Tz(x)+�(x)) ≈ h(�Tz(x))+
h′(�Tz(x))�(x)=h(�Tz(x))+n−1/2f (x). The factor n−1/2 is necessary for an appropriate asymptotic treatment—see
Wiens and Xu (2005).

The experimenter takes n uncorrelated observations Yi = Y (xi ), with xi freely chosen from a design space S. One
possible goal is prediction, or equivalently the estimation of E(Y |x) throughout the region T =S. If instead T ∩S =�,

the goal is extrapolation. In this article, we discuss both prediction problems and extrapolation problems. We will as
well allow for the possibility that observations on Y , although uncorrelated, are heteroscedastic: var{Y (x)} = �2g(x)

for an unknown function within a certain class. We estimate � by nonlinear least squares, possibly weighted with
nonnegative weights w(x).

For the prediction case, our loss function is n times the integrated mean squared prediction error (IMSPE) of Ŷ (x) in
estimating E(Y |x), x ∈ S. For extrapolation, loss is n times the integrated mean squared extrapolation error (IMSEE)
of Ŷ (x) in estimating E(Y |x), x ∈ T . Both depend on the design measure � = n−1�n

i=1I (x = xi ) as well as on
w, f and g. Formally,

IMSPE(f, g, w, �) = n

∫
S

E{[Ŷ (x) − E(Y |x)]2} dx,

IMSEE(f, g, w, �) = n

∫
T

E{[Ŷ (x) − E(Y |x)]2} dx.

There is a sizeable literature concerning regression designs for a possibly misspecified linear response. Such designs
for homoscedastic errors have been studied by Box and Draper (1959), Huber (1975) and Wiens (1992). Designs for
prediction with as well possible heteroscedasticity were obtained byWiens (1998). For extrapolation with homoscedastic
errors see Draper and Herzberg (1973), Huber (1975), Lawless (1984) and Spruill (1984). In these studies, the goal was
extrapolation to one fixed point on or outside the boundary of the design space. Robust designs for extrapolation with
possible heteroscedasticity were obtained by Fang and Wiens (1999). Designs for extrapolation to one point outside
the design space were studied by Dette and Wong (1996), whose extrapolation designs for polynomial responses are
robust against misspecification of the degree of the polynomial, and more recently by Wiens and Xu (2005).

For nonlinear regression, Atkinson and Haines (1996) and Ford et al. (1989) present various static and sequential
designs for nonlinear models without the consideration of model uncertainty. Sinha and Wiens (2002) also employ
notions of robustness in the construction of sequential designs for the nonlinear model. In addition, Wiens and Xu
(2005) discuss the construction of robust designs for a possibly misspecified nonlinear model and for extrapolation of
a regression response to one point outside of the design space. The current work goes beyond that of Wiens and Xu
(2005) in that we deal with both prediction and extrapolation and, in the latter case, we allow the extrapolation space
T to have nonzero measure. We go beyond Fang and Wiens (1999) in treating nonlinear models. The major advance,
though, is perhaps our treatment of essentially unrestricted regressors z(x). Explicit designs in almost all problems
involving misspecified regressors were hitherto restricted to cases in which z(x) was well structured—e.g. straight line
regression (z(x) = (1, x)T), polynomial regression, or multiple regression without interactions on a spherical design
space (z(x) = (1, xT)T, ‖x‖�const.). The improvements in the current work are made possible by our adaptation of
recent results of Shi et al. (2003), henceforth referred to as SYZ.

SYZ investigated the analytical form of minimax designs for prediction problems when the function f was an unknown
member of the class

F =
{
f

∣∣∣∣
∫

S

z(x)f (x) dx = 0,

∫
S

f 2(x) dx��2 < ∞
}

.

In our terminology, they considered the case of approximate linearity—h(�) = �—and homoscedasticity g = 1, where
1(x) = x. The orthogonality condition in F ensures that the parameter � is uniquely defined in model (1). The second
condition assures that overall f is not too large.

The class F is sufficiently rich that any ‘design’ with finite maximum loss must have a density, and thus must be
approximated to make it implementable. Approximation methods are discussed in Heo et al. (2001). These can, for
instance, take the form of choosing the design points so as to obtain agreement between the (i − 1)/(n − 1)-quantiles
(i = 1, . . . , n) of the empirical and theoretical design measures, or between the moments to a sufficiently high order.
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SYZ show that the minimax design densities are of the form

m(x) =
[

zT(x)Pz(x) + d

zT(x)Qz(x)

]+

for almost all x ∈ S, where c+ = max(c, 0), for suitable constant symmetric matrices P, Q and a constant d. These
constants may then be determined numerically.

In this article we extend SYZ so as to obtain robust designs for extrapolation and prediction, assuming that the
regression response is as at (2) and that the errors may be heteroscedastic. If the function h in (2) is not the identity
then our designs are only locally optimal. They are, however, still of substantial practical interest—see reasons for this
as listed in Ford et al. (1992) and restated in Ford et al. (1989). One typical reason is that where sequential designs
can be carried out in batches, the design for the next batch might be a locally optimal design based on the estimates
obtained from the previous batch. Allowing for uncertainty in our best guess at a local parameter, we adopt the approach
introduced in Wiens and Xu (2005) to find ‘locally most robust’ designs which are minimax with respect to a region
containing the initial parameters.

We denote unweighted least squares by w = 1, homogeneous variances by g = 1. The following problems will be
addressed:

(P1) Ordinary least squares (OLS) estimation with homoscedasticity: determine designs to minimize the maximum
value, over f, of IMSEE(f, 1, 1, �).

(P2) OLS with heteroscedasticity: determine designs to minimize the maximum value, over f and g, of IMSPE(f,g,1,�).
(P3) OLS with heteroscedasticity: determine designs to minimize the maximum value, over f and g, of IMSEE(f,g,1,�).
(P4) Weighted least squares (WLS) estimation with heteroscedasticity: determine designs and weights to minimize

the maximum value, over f and g, of IMSPE(f, g, w, �).
(P5) WLS with heteroscedasticity: determine designs and weights to minimize the maximum value, over f and g, of

IMSEE(f, g, w, �).

The rest of this article is organized as follows. The designs for P1 are provided in Section 3. Those for P2 and P3 are
given in Section 4. The designs and weights which constitute the solutions to problems P4 and P5 are given in Section
5. Some mathematical preliminaries are detailed in Section 2. We present several examples in Section 6, and conclude
with a few remarks in Section 7. Derivations are provided in the Appendix.

2. Preliminaries and notation

The regression models discussed in this paper are very similar to those in Wiens and Xu (2005), except that we
consider the prediction case as well and allow the extrapolation space to be any space, of positive Lebesgue measure,
outside the design space. For the reader’s convenience, we briefly describe this model here.

We assume that the contaminant f (·) is an unknown member of

F =
{
f

∣∣∣∣
∫

S

f 2(x) dx��2
S < ∞,

∫
T

f 2(x) dx��2
T < ∞,

∫
S

z̃(x)f (x) dx = 0
}

, (3)

where � = �Tz(x), z̃(x) = (dh/d�|�=�0)z(x) and �S , �T are positive constants. For prediction problems (T = S) the
second condition in (3) merges into the first. The last condition is required in order that �0 can be uniquely defined,
and in fact arises through the definition

�0 = arg
�

min

{∫
S

[h(�Tz(x)) − E(Y |x)]2 dx
}

together with

fn(x) = √
n[E(Y |x) − h(�T

0 z(x))].
Where possible, we drop the subscript on f .
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The observations Yi , although uncorrelated with mean h(�T
0 z(xi )) + n−1/2f (xi ), are possibly heteroscedastic with

var{Y (xi )} = �2g(xi ) (4)

for a function g satisfying conditions given in Section 4.
For extrapolation problems, the only assumptions made about T are that it is disjoint from S and has nonzero Lebesgue

measure. To ensure the nonsingularity of a number of relevant matrices, we assume that the design and extrapolation
spaces satisfy

(A) For each a 
= 0, the set {x ∈ S ∪ T : aTz̃(x) = 0} has Lebesgue measure zero.
We make use of the following matrices and vectors:

AS = ∫
S

z̃(x)z̃T(x) dx, AT = ∫
T

z̃(x)z̃T(x) dx,

B = ∫
S

z̃(x)z̃T(x)w(x)�(dx), D = ∫
S

z̃(x)z̃T(x)w2(x)g(x)�(dx),

bf,S = ∫
S

z̃(x)f (x)w(x)�(dx), bf,T = ∫
T

z̃(x)f (x) dx.

It follows from (A) that AS is nonsingular and that B is nonsingular as well if, as is assumed below, � is absolutely
continuous. The LSE of �0 is

�̂ = arg min
n∑

i=1

[Yi − h(�Tz(x))]2w(xi ).

The information matrix is

I(�0) = lim
n→∞ E

(
−1

n
�̈(�0)

)
= B

and the asymptotic distribution of
√

n(�̂ − �0) is
√

n(�̂ − �0) ∼ AN(B−1bf,S, �2B−1DB−1).

For prediction, the loss function IMSPE splits into terms due to bias, variance and model misspecification:

IMSPE(f, g, w, �) = n

∫
S

E{[Ŷ (x) − E(Y |x)]2} dx

= n

∫
S

E

{[
h(�̂

T
z(x)) − h

(
�T

0 z(x)
)

− 1√
n
f (x)

]2
}

dx

= IPB(f, w, �) + IPV(g, w, �) +
∫

S

f 2(x) dx,

where the integrated bias (IPB) and integrated variance (IPV) are

IPB(f, w, �) = n

∫
S

{E[h(�̂
T

z(x)) − h(�T
0 z(x))]}2 dx − 2

√
n

∫
S

f (x)E[h(�̂
T

z(x)) − h(�T
0 z(x))] dx

and

IPV(g, w, �) = n

∫
S

VAR(Ŷ (x)) dx = n

∫
S

VAR(h(�̂
T

z(x))) dx.

Asymptotically,

IPB(f, w, �) = bT
f,SB−1ASB−1bf,S ,

IPV(g, w, �) = �2 tr(B−1ASB−1D).

(The second term in IPB vanishes asymptotically by virtue of the orthogonality condition in the definition of F.)
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For extrapolation, the loss function IMSEE decomposes in a similar fashion:

IMSEE(f, g, w, �) = n

∫
T

E{[Ŷ (x) − E(Y |x)]2} dx = IEB(f, w, �) + IEV(g, w, �) +
∫

T

f 2(x) dx,

where, asymptotically,

IEB(f, w, �) = bT
f,SB−1AT B−1bf,S − 2bf,T B−1bf,S ,

IEV(g, w, �) = �2 tr(B−1AT B−1D).

Let k(x) be the density of �, and define m(x)=k(x)w(x). Without loss of generality, we assume that the mean weight
is
∫
S

w(x)�(dx) = 1. Then m(x) is also a density on S which satisfies∫
S

m(x)

w(x)
dx = 1 (5)

and

B =
∫

S

z̃(x)z̃T(x)m(x) dx,

bf,S =
∫

S

z̃(x)f (x)m(x) dx.

From the definitions of B, bf,S and bf,T , we notice that IPB(f, w, �) and IEB(f, w, �) rely on (w, �) only through
m and IPV(g, w, �) and IEV(g, w, �) through m and w. Hence, we can optimize over m and w subject to (5) rather
than over k and w.

Although the IEB may be negative,

IEB +
∫

T

f 2(x) dx = n

∫
T

{E[h(�̂
T

z̃(x)) − h(�T
0 z̃(x)) − n−1/2f (x)]}2 dx�0.

We define rT ,S =�T /�S , reflecting the relative amounts of model response uncertainty in the extrapolation and design
spaces, and 	 = �2/�2

S , representing the relative importance of variance versus bias. We remark that for prediction our
results depend on the unknown parameters only through 	 and �0, while for extrapolation they depend on the parameters
only through rT ,S , 	 and �0. In the special case h(�) = �, the results are independent of �0.

We also require the definitions K=∫
S

z̃(x)z̃T(x)m2(x) dx, G=K−BA−1
S B, HS=B−1ASB−1, and HT =B−1AT B−1.

In the next three sections, we will exhibit solutions to P1–P5.

3. Optimal extrapolation designs with homoscedasticity: solutions to P1

SYZ provide the form of the minimax density for prediction when h = 1. In this section, we extend this result to
extrapolation and to a general h.

Denote the largest eigenvalue of a matrix X by 
max(X). As at Theorem 2.1(a) in Fang and Wiens (1999), the
maximum extrapolation bias is

sup
f ∈F

IEB(f, 1, �) = �2
S[(√
max(GHT ) + rT ,S)2 − r2

T ,S]�0.

Therefore, the maximum IMSEE is

sup
f ∈F

IMSEE(f, 1, 1, m) = �2
S

[
(
√


max(GHT ) + rT ,S)2 + 	
∫

S

z̃T(x)HT z̃(x)m(x) dx
]

= �2
S

[
(
√


max(GHT ) + rT ,S)2 + 	 tr(B−1AT )
]

. (6)
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A minimax design is one for which the density m minimizes (6). This is an optimization problem with an objective
function involving a generally nonsmooth function 
max. Employing nonsmooth optimization theory (Clarke, 1983;
see SYZ for a useful review), we obtain the following result.

Theorem 1. The minimax design density for extrapolation, when the variances are homogeneous, is of the form

m(x) =
[

z̃T(x)Pz̃(x) + d

z̃T(x)Qz̃(x)

]+
(7)

for almost all x ∈ S, for constant symmetric matrices P, Q(�0) and a constant d. The constants minimize (6) and
satisfy

∫
S

m(x) dx = 1.

Remarks. 1. As in SYZ, in the examples for linear regression in this article, we only consider symmetric densities
when the structure of the design and extrapolation spaces make this appropriate.

2. The symmetric—in each component of x—minimax density has the form exhibited in Theorem 1 but with the
odd functions of these components vanishing. The proof of this is very similar to the proof in Shi (2002) for linear
regression.

Example 3.1. For the regression model

Y = �0 + �1x + �2x
2 + f (x) + �, x ∈ [−a, a]

with symmetric extrapolation space [−r2, −r1) ∪ (r1, r2] for 0 < a�r1 < r2, it is reasonable to restrict to symmetric
designs. According to Theorem 1, the symmetric optimal design for this model with homoscedasticity is of the form

m(x) =
(

a1 + a2x
2 + a3x

4

a4 + a5x2 + a6x4

)+
, (8)

where a4 and a6 are nonnegative. Some computations for this case are shown in Example 6.1.

Example 3.2. For the linear regression model with two interacting regressors

Y = �0 + �1x1 + �2x2 + �12x1x2 + f (x1, x2) + �,

with S = [−a, a] × [−a, a] and T = [−r, r] × [−r, r]\S (r > a), the minimax designs for prediction were studied by
Adewale (2002) who states that the symmetric, exchangeable minimax density is given by

m(x1, x2) =
(

a + b(x2
1 + x2

2 ) + cx2
1x

2
2

a′ + b′(x2
1 + x2

2 ) + c′x2
1x2

2

)+
.

From Theorem 1, the minimax symmetric and exchangeable density for extrapolation is also of this form.

Example 3.3. For the nonlinear regression model

Y = e�0+�1x + f (x) + �, (9)

for which h(�)= e�, we take S =[0, 1] and T = (1, r]. The locally most robust extrapolation design density is given by

m(x) =
(

e2�1x(a1 + b1x + c1x
2) + d

e2�1x(a2 + b2x + c2x2)

)+
,

where a2 �0, c2 �0 and a1, b1, c1, a2, b2, c2 and d chosen in order to minimize (6) subject to
∫ 1

0 m(x) dx = 1. The
dependence of the design on �1 is an issue which will be addressed in Example 6.2.
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4. Optimal prediction and extrapolation designs with heteroscedasticity for OLS: solutions to P2 and P3

In this and the next section we construct designs which are robust against heteroscedasticity as well as against
departures from the fitted response. The heteroscedasticity is governed by g(·)—recall (4)—which is assumed to
belong to

G =
{
g

∣∣∣∣
∫

S

g2(x) dx�−1 =
∫

S

dx < ∞
}

. (10)

In (10), the equality condition is equivalent to defining

�2 = sup
g

[∫
S

var2{�(x)} dx
]1/2

.

As at Theorem 1(c) in Wiens (1998) and Theorem 2.1(c) of Fang and Wiens (1999), for OLS the maximum integrated
mean square prediction error and extrapolation error are

sup
f ∈F,g∈G

IMSPE(f, g, 1, m) = �2
S

{

max(KHS)

+	−1/2[∫
S
{z̃T(x)HS z̃(x)m(x)}2 dx

]1/2

}
, (11)

sup
f ∈F,g∈G

IMSEE(f, g, 1, m) = �2
S

{
(
√


max(GHT ) + rT ,S)2

+	−1/2[∫
S
{z̃T(x)HT z̃(x)m(x)}2 dx

]1/2

}
, (12)

respectively. Therefore problem P2 requires finding a density m(·) which minimizes (11), whereas P3 requires finding
a density which minimizes (12).

Theorem 2. The minimax design densities for both prediction and extrapolation with OLS estimation, when the vari-
ances are possibly heterogeneous, have the form

m(x) =
[

z̃T(x)Pz̃(x) + d

z̃T(x)Qz̃(x) + {z̃T(x)Uz̃(x)}2

]+
(13)

for almost all x ∈ S, for constant symmetric matrices P, Q(�0), U(> 0) and a constant d such that (1)
∫
S

m(x) dx = 1
and (2) for prediction, (11) is minimized, while for extrapolation (12) is minimized.

Example 4.1. For the simple linear regression model

Y = �0 + �1x + f (x) + �, (14)

with S = [−1, 1], the minimax prediction design was studied by Wiens (1998). It was shown there that the minimax
symmetric density is given by

m(x) =
(

a + bx2

1 + cx2 + dx4

)+
, (15)

a form which now follows as well from Theorem 2. Similarly, for extrapolation, Fang and Wiens (1999) derive the
form (15). More generally, for OLS in the multiple linear regression model

Y = �0 +
p−1∑
j=1

�j xj + f (x) + �,

with S being a unit hypersphere centred at the origin and T ={x|1 < ‖x‖�r}, Fang and Wiens (1999) obtained conditions
under which the minimax symmetric extrapolation design density would be given by

m(x) =
(

a + b‖x‖2

c + d‖x‖2 + e‖x‖4

)+
.

This form now follows, without conditions, from Theorem 2 and Remark 2 in Section 3.
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Example 4.2. For the nonlinear model (9) it follows from Theorem 2 that the locally optimal design density for both
prediction and extrapolation is of the form

m(x) =
(

e2�1x(a1 + b1x + c1x
2) + d

e2�1x[(a2 + b2x + c2x2) + e2�1x(a3 + b3x + c3x2)2]

)+
, (16)

where a2 �0, c2 �0, a3 > 0 and c3 > 0. When �1 = 0, (16) can be reduced to

m∗(x) =
[

a1 + a2x + a3x
2

1 + a5x + a6x2 + a7x3 + a8x4

]+
,

where a6 and a8 are positive. The computation of our designs for this model are detailed in Example 6.2.

5. Optimal prediction and extrapolation designs with heteroscedasticity for WLS: solutions to P4 and P5

In this section we propose to estimate � by WLS, and again consider both prediction and extrapolation problems.
For prediction we proceed as in Wiens (1998) and obtain

sup
f ∈F,g∈G

IMSPE(f, g, w, m) = �2
S

{

max(KHS) + 	−1/2

[∫
S

{w(x)z̃T(x)HS z̃(x)m(x)}2 dx
]1/2
}

. (17)

The weights minimizing (17) for fixed m(x), subject to
∫
S
(m(x)/w(x)) dx = 1, are, in terms of

�S,m =
∫

S

[z̃T(x)HS z̃(x)m2(x)]2/3 dx,

given by

wS,m(x) = �S,m[{z̃T(x)HS z̃(x)}2m(x)]−1/3I {m(x) > 0}. (18)

Then

min
w

sup
f ∈F,g∈G

IMSPE(f, g, w, m) = �2
S{
max(KHS) + 	−1/2�3/2

S,m} (19)

and problem P4 becomes that of finding a density m∗(x) which minimizes (19). Then the weights wS,m∗(x) obtained
from (18) and the design density

k∗(x) = m∗(x)

wS,m∗(x)
= �−1

S,m∗{z̃T(x)HS z̃(x)m∗2(x)}2/3

are optimal for WLS prediction.
For extrapolation we follow Fang and Wiens (1999) and obtain

sup
f ∈F,g∈G

IMSEE(f, g, w, m) = �2
S

{
(
√


max(GHT ) + rT ,S)2 + 	−1/2
[∫

S

{w(x)z̃T(x)HT z̃(x)m(x)}2 dx
]1/2
}

.

The minimizing weights are given by

wT,m(x) = �T ,m[{z̃T(x)HT z̃(x)}2m(x)]−1/3I {m(x) > 0}, (20)

with

min
w

sup
f ∈F,g∈G

IMSEE(f, g, m) = �2
S{(√
max(GHT ) + rT ,S)2 + 	−1/2�3/2

T ,m} (21)
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and to solve P5 we seek a density m∗(x) which minimizes (21). Then the weights wT,m∗(x) obtained from (20) and the
design density

k∗(x) = m∗(x)

wT,m∗(x)
= �−1

T ,m∗{z̃T(x)HT z̃(x)m∗2(x)}2/3 (22)

are optimal for WLS extrapolation.
The following theorem provides the form of m∗(x) for both prediction and extrapolation.

Theorem 3. The minimax densities m∗(x) for both prediction and extrapolation with WLS estimation, when the vari-
ances are possibly heterogeneous, are of the form

m∗(x) =
[
c(x) − k(x)

b(x)

]+
, (23)

where, for constant symmetric matrices P, Q(�0), U(> 0) and a constant d we have b(x) = z̃T(x)Qz̃(x), c(x) =
z̃T(x)Pz̃(x) + d and

k3 + a3

b
k − a3c

b
= 0,

with a(x) = {z̃T(x)Uz̃(x)}2/3. Explicitly,

k = a

⎡
⎣{ c

2b
+
√( c

2b

)2 +
( a

3b

)3
}1/3

+
{

c

2b
−
√( c

2b

)2 +
( a

3b

)3
}1/3
⎤
⎦ . (24)

The constants satisfy (1)
∫
S

m(x) dx = 1 and (2) minimize (19) for prediction, (21) for extrapolation.

Example 5.1. For the simple linear regression model (14) with S = [−1, 1] and T = {x|1 < |x|�r} we obtain (23)
with

c(x) = a1 + a2x
2,

b(x) = a3 + a4x
2,

a(x) = (a5 + a6x
2)2/3,

where a3 �0, a4 �0, a2
3 + a2

4 > 0, a5 > 0 and a6 > 0 are determined as in the statement of Theorem 3. The minimax
weights are obtained from (18) and (20) with

z̃T(x)HS z̃(x) = 2 + 2
3x2
(∫ 1

−1
x2m(x) dx

)−2

,

z̃T(x)HT z̃(x) = 2(r − 1) + 2
3 (r3 − 1)x2

(∫ 1

−1
x2m(x) dx

)−2

.

Example 5.2. For the nonlinear model (9) with S = [0, 1] and T = (1, r] (r > 1) we attain (23) with

c(x) = a0 + e2�1x(a1 + a2x + a3x
2),

b(x) = e2�1x(a4 + a5x + a6x
2),

a(x) = [e2�1x(a7 + a8x + a9x
2)]2/3,

where a4 �0, a6 �0, a2
4 + a2

6 > 0, a7 > 0 and a9 > 0 are determined as in Theorem 3. Note that the term e2�0 has been
absorbed into a1, . . . , a9. The minimax weights are derived from (18) and (20) with

z̃T(x)HS z̃(x) = (u1u3 − u2
2)

−2e2�1x�(x; s1, s2, s3, u1, u2, u3),

z̃T(x)HT z̃(x) = (u1u3 − u2
2)

−2e2�1x�(x; t1, t2, t3, u1, u2, u3),
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where

�(x; s1, s2, s3, u1, u2, u3)

= (u2
3s1 − 2u2u3s2 + u2

2s3) + 2(u1u3s2 − u1u2s3 − u2u3s1 + u2
2s2)x + (u2

1s3 − 2u1u2s2 + u2
2s1)x

2,

s1 = e2�1 − 1
2�1

, s2 = e2�1 − s1
2�1

, s3 = e2�1 − 2s2
2�1

,

t1 = e2�1r − e2�1

2�1
, t2 = re2�1r − e2�1 − t1

2�1
, t3 = r2e2�1r − e2�1 − 2t2

2�1
,

u1 =
∫ 1

0
e2�1xm(x) dx, u2 =

∫ 1

0
xe2�1xm(x) dx, u3 =

∫ 1

0
x2e2�1xm(x) dx.

6. Computations and examples

Example 6.1. Recall Example 3.1 and (8). We take r1 = 1 and denote r2 by r. If either of a4 or a6 is nonzero, we may
take it to be unity. We take a4 =1 and rT ,S =1. Some numerical values of the constants are shown in Table 1. Fig. 1 gives

Table 1
Coefficient values for the density (8) with a4 = 1 for Example 6.1

r 	 a1 a2 a3 a5 a6 Loss

1.5 0.1 0.377 78.22 273.86 278.32 149.87 6.79
0.25 1.16 −6.45 289.98 217.64 27.96 9.50
1 1.16 −37.05 70.72 −2.60 18.62 19.70
5 0.804 −13.31 16.85 −3.98 4.18 61.06

10 0.923 −20.53 24.57 −3.99 3.98 108.49
100 1.65 −124.34 132.51 −3.50 3.06 853.72

5 0.1 0.524 −1.04 1.55 −1.10 1.59 1302.54
0.25 0.654 −4.17 5.71 −5.02 6.30 2544.55
1 0.822 −6.52 8.38 −4.62 5.33 8508.54
5 1.21 −16.62 19.64 −4.28 4.59 34294.25

10 1.47 −28.05 32.05 −4.19 4.39 63387.51
100 2.98 −214.47 226.23 −4.02 4.04 534222.2
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Fig. 1. Minimax extrapolation densities m(x) = ((a1 + a2x2 + a3x4)/(1 + a5x2 + a6x4))+ in Example 6.1. (a) r = 1.5 and (b) r = 5. Each plot
uses three values of 	: 	 = 0.1 (solid line), 	 = 1 (dotted line), 	 = 5 (broken line).
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Table 2
Coefficient values for the density (16) in Example 6.2 with a2 = 1 and �1 = 1

	 a1 b1 c1 d b2 c2 a3 b3 c3

0.5 −513.21 495.36 6.99 782.40 3.44 46.96 16.07 −39.74 25.31
1 932.34 −2428.57 1892.85 −322.54 12.23 106.62 25.44 −60.19 38.81
5 2044.47 −4883.06 3303.49 −816.61 7.95 25.45 35.90 −81.08 50.00
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Fig. 2. Optimal minimax design densities m(x) = ((e2�∗
1x

(a1 + b1x + c1x2) + d)/(e2�∗
1x [(1 + b2x + c2x2) + e

2�∗
1x

(a3 + b3x + c3x2)2]))+ in
Example 6.2. (a) Locally optimal design densities for �∗

1 = 1 and (b) locally most robust design densities for �∗
1 =�LF

1 in [0, 2]. Each plot uses three
values of 	: 	 = 0.5 (solid line), 	 = 1 (dotted line), 	 = 5 (broken line).

Table 3
Coefficient values for the locally most robust density (16)

	 a1 b1 c1 d b2 c2 a3 b3 c3

0.5 24022.10 −28233.18 4874.55 3336.73 1.78 20.02 158.10 −291.20 136.26
1 92029.01 −217292.1 138815.1 −69222.57 1.34 8.32 173.63 −362.91 200.60
5 122521.4 −276528.6 161973.8 −85323.74 9.06 105.07 225.56 −483.99 265.67

plots of the minimax extrapolation densities for varying r and 	. The designs can be roughly described as replacing
those points masses at −1, 1 and 0 in the variance minimizing designs by more or less uniformly distributed clusters in
neighbourhoods of these points. Decreasing 	 results in more uniform designs. A larger r (wider extrapolation region)
results in more uniformity as well, especially in the central region.

Example 6.2. Recall Example 4.2 and the nonlinear model (9) with possible heteroscedasticity. The locally optimal
design density for prediction is given by (16). See Table 2 for the numerical values of the constants in (16) and
Fig. 2(a) for plots. Here we have taken a2 = 1 and �1 = 1.

These designs are only locally optimal since they depend on the value of �1. To deal with this, we obtain ‘locally
most robust’ designs as in Wiens and Xu (2005). For this, we take a further maximum of the loss as �1 varies over some
interval I, and determine the coefficients of m(x) so as to minimize this maximum loss. For I =[0, 2], the locally most
robust designs are detailed in Table 3 for varying 	. In each case, we found that the least favourable �1 within I, say
�LF

1 , is 2. See Fig. 2(b) for plots. Although, as pointed out in Silvey (1980), local designs tailored for optimality at a
least favourable parameter value are sometimes inefficient at distant points, it has been our experience that the designs
constructed here do not exhibit a strong dependence on �1.
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Table 4
Coefficient values for the locally optimal product (23) of density and weights in Example 6.3

	 a0 a1 a2 a3 a5 a6 a7 a8 a9

0.5 163.19 582.58 −369.48 211.80 6.18 26.47 18978.42 165.78 1122.10
1 134.09 2710.50 −2352.19 1737.83 11.92 84.98 138644.97 4451.39 65374.78
2 −3269.85 10678.54 −12184.94 9087.93 13.45 81.59 581177.64 20860.88 701666.09
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Fig. 3. Locally optimal and most robust design densities and corresponding weights for WLS in Example 6.3: (a) locally optimal design densities;
(b) optimal weights corresponding to (a); (c) locally most robust design densities; and (d) optimal weights corresponding to (c). Each plot uses two
values of 	: 	 = 0.5 (solid line) and 	 = 2 (broken line).

Table 5
Coefficient values for the locally most robust product (23) of density and weights in Example 6.3

	 a0 a1 a2 a3 a5 a6 a7 a8 a9

0.5 454.81 1703.64 −838.72 822.42 13.29 79.77 92972.48 2543.26 13839.74
1 439.79 3903.54 −2821.33 2281.76 0.198 81.49 255487.7 299.60 30479.58
2 −4938.22 7237.60 −6652.43 3692.79 −3.95 74.05 95311.10 3999.84 56657.32

Example 6.3. Recall Example 5.2 and model (9) with S = [0, 1]. The locally optimal product of density and weights
for the prediction problem is given by (23). We take a4 =1. For �1 =1, the numerical values of the constants in (23) are
given in Table 4. See Fig. 3(a) and (b) for plots of the locally optimal design densities and the corresponding optimal
regression weights.

For I = [0.5, 1.5], the locally most robust products of density and weights are provided in Table 5 for varying 	. In
each case, we found that the least favourable �1 within I is 0.5. See Fig. 3(c) and (d) for plots.

7. Concluding remarks

We have derived minimax prediction and extrapolation designs for misspecified generalized linear response models in
the following three cases: (i) using OLS estimation under homoscedasticity, (ii) using OLS estimation under possible
heteroscedasticity and (iii) using WLS estimation under possible heteroscedasticity. For each case with OLS, we
conclude that the minimax extrapolation design density has the same form as that for the corresponding prediction
problem. For case (iii), the product of the design density and weights function has the same form for both prediction and
extrapolation. These analytic forms are completely general, but contain several constants to be determined numerically.
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Wiens and Xu (2005) have derived minimax designs for extrapolation to a single point. Although the current work
has assumed an extrapolation space with positive Lebesgue measure, the designs for one point extrapolation can be
derived informally as limits of those in this article, as follows.

(1) The minimax one-point extrapolation design density for (i) above was shown in Wiens and Xu (2005) to have
the form

m(x) =
[

z̃T(x)�z̃T(x)� + d

{z̃T(x)�}2

]+
.

This is the special case of form (7) with P = (��T + ��T)/2 and Q = ��T.
(2) The minimax one-point extrapolation design density for (ii) above was shown to have the form

m(x) =
[ {z̃T(x)�}{z̃T(x)�} + d

{z̃T(x)�}2 + b{z̃T(x)�}4

]+
.

This is the special case of (13) with P = (��T + ��T)/2, Q = ��T and U = √
bQ.

(3) The minimax product of design densities and weights for (iii) was shown to have the form

m(x) =
[
(z̃T(x)�)(z̃T(x)�) + d − c

(z̃T(x)�)2

]+
,

where c satisfies the cubic equation

c3 + b(z̃T(x)�)2c = b(z̃T(x)�)2[(z̃T(x)�)(z̃T(x)�) + d]
and b > 0. This is the special case of (23) with P = (��T + ��T)/2, Q = ��T and U = √

bQ.
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Appendix A. Derivations

Proof of Theorem 1. In what follows a prime (·)′ denotes the Fréchet derivative of (·), �(·) is the Clarke generalized
gradient of (·) and Nm(x)�0(m) is the normal cone of {m : m(x)�0}, i.e.

Nm(x)�0(m) =
{
�(x) :

∫
S

�(x)(m1 − m) dx�0 for any m1(x)�0

}
.

(See SYZ for basic definitions.)
Define L1 = supf ∈FIMSEE(f, 1, 1, m), given at (6), and let m(x) be a density minimizing L1. (The existence of

such a density is established as in Ye and Zhou, 2004.) Then by the nonsmooth Lagrange multiplier rule (Clarke, 1983,
Theorem 6.1.1), there exist real numbers 
�0 and �, not both zero, such that

0 ∈ 
�L1(m) + �

(∫
S

m(x) dx − 1

)′
+ Nm(x)�0(m). (A.1)

Note that G = ∫
S
[{m(x)I − BA−1

S }z̃(x)][{m(x)I − BA−1
S }z̃(x)]T dx�0. We temporarily assume that G is positive

definite. Then as at Theorem 2 of SYZ, the generalized gradient of 
max(GHT ) at m is

�
max(GHT ) = co

{(
wTHT w
wTG−1w

)′
: w ∈ M(m)

}
,
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where

M(m) =
{

w : wTHT w
wTG−1w

= max‖w‖=1

wTHT w
wTG−1w

}

and

co A =
{∑


iai : 
i �0,
∑


i = 1, ai ∈ A
}

is the convex hull of set A. From the Chain Rule (Clarke, 1983, Theorem 2.3.10),

�(
√


max(GHT ) + rT ,S)2 =
(

1 + rT ,S√

max(GHT )

)
�
max(GHT )

=
(

1 + rT ,S√

max(GHT )

)
co

{(
wTHT w
wTG−1w

)′
: w ∈ M(m)

}
. (A.2)

We require the following Fréchet derivatives, which can be calculated as in SYZ:

(tr[B−1AT ])′ = −z̃T(x)B−1AT B−1z̃(x), (A.3)(
wTHT w
wTG−1w

)′

m

= z̃T(x)M̃wz̃(x) + {b̃T
wz̃(x)}2m(x). (A.4)

In (A.4), w is any vector in R and M̃w is a p × p symmetric matrix, b̃w a p × 1 vector whose specific values are not
important to us.

By (A.1)–(A.4), we have that

0 ∈ 
�2
S

[(
1 + rT ,S√


max(GHT )

)
co{z̃T(x)M̃wz̃(x) + (b̃T

wz̃(x))2m(x) : w ∈ M(m)} − 	z̃T(x)B−1AT B−1z̃(x)

]

+ � + Nm(x)�0(m). (A.5)

Let Mw = (1 + rT ,S/
√


max(GHT ))M̃w, bw = (1 + rT ,S/
√


max(GHT ))1/2b̃w and note that (
∫
S

m(x) dx − 1)′m = 1.
Then (A.5) becomes

0 ∈ 
�2
S[co{z̃T(x)Mwz̃(x) + (bT

wz̃(x))2m(x) : w ∈ M(m)} − 	z̃T(x)B−1AT B−1z̃(x)]
+ � + Nm(x)�0(m).

It can be shown, as in the proof of Theorem 1 of SYZ, that 
 
= 0.
By the definition of convex hull, there exists a positive integer N, nonnegative scalars 
1, . . . , 
N with 
1+· · ·+
N =1,

wi ∈ M(m) ⊂ Rp and � ∈ Nm(x)�0(m) such that

0 = 
�2
S

[
N∑

i=1


i{z̃T(x)Mwi
z̃(x) + (bT

wi
z̃(x))2m(x)} − 	z̃T(x)B−1AT B−1z̃(x)

]
+ � + �

= 
�2
S

N∑
i=1


i (bT
wi

z̃(x))2m(x) − 
�2
S z̃T(x)

[
	B−1AT B−1 −

N∑
i=1


iMwi

]
z̃(x) + � + �.

Consequently, there exists a constant symmetric matrix P=
�2
S z̃T(x)[	B−1AT B−1 −∑N

i=1
iMwi
], a constant positive

semi-definite matrix Q = 
�2
S

∑N
i=1
ibwi

bT
wi

and a constant d = −� such that

0 = z̃T(x)Qz̃(x)m(x) − z̃T(x)Pz̃(x) − d + �. (A.6)

From Proposition 3 of SYZ we see that � = 0 almost everywhere on {x ∈ S : m(x) > 0} and hence

z̃T(x)Qz̃(x)m(x) − z̃T(x)Pz̃(x) − d = 0
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for all x such that m(x) > 0. Since z̃T(x)Qz̃(x) =∑N
i=1
i{bT

wi
z̃(x)}2 > 0 for almost all x ∈ S we obtain

m(x) = z̃T(x)Pz̃(x) + d

z̃T(x)Qz̃(x)

for almost all x ∈ S such that m(x) > 0. For those x ∈ S such that m(x) = 0 we apply Proposition 3 of SYZ again to
infer that ��0 a.e. and hence by (A.6), z̃T(x)Pz̃(x) + d �0. Consequently,

z̃T(x)Pz̃(x) + d

z̃T(x)Qz̃(x)
�0

for almost all x ∈ S such that m(x) = 0, and (7) follows in the case that G is positive definite. This unnecessary
assumption may now be dropped by arguing in the same manner as in the proof of Theorem 1 in SYZ. �

Proof of Theorem 2. We give the proof only for extrapolation, that for prediction being similar but simpler. Define
lm(x) = z̃T(x)HT z̃(x). Then from (12) we seek a density m(·) minimizing

L2
def.= sup

f ∈F,g∈G
IMSEE(f, g, 1, m) = �2

S

{
(
√


max(GHT ) + rT ,S)2 + 	−1/2
[∫

S

{lm(x)m(x)}2 dx
]1/2
}

.

We again initially assume G > 0. As in the preceding proof there exist real numbers 
�0 and �, not both zero, such
that

0 ∈ 
�L2(m) + �

(∫
S

m(x) dx − 1

)′
+ Nm(x)�0(m), (A.7)

where the last two terms (
∫
S

m(x) dx − 1)′ and Nm(x)�0(m) are the same as those in the proof of Theorem 1. Note that
L1 and L2 differ only in their variance terms. Using([∫

S

{lm(x)m(x)}2 dx
]1/2
)′

=
(∫

S

{lm(x)m(x)}2 dx
)−1/2 {

l2
m(x)m(x) − 2z̃T(x)HT

(∫
S

lm(x)m2(x)z̃(x)z̃T(x) dx
)

B−1z̃(x)

}

in the evaluation of (A.7) we obtain

0 ∈ 
�2
S

{
co{z̃T(x)Mwz̃(x) + (bT

wz̃(x))2m(x) : w ∈ M(m)} + 	−1/2(
∫
S
{lm(x)m(x)}2 dx)−1/2

×{l2
m(x)m(x) − 2z̃T(x)HT (

∫
S

lm(x)m2(x)z̃(x)z̃T(x) dx)B−1z̃(x)}

}

+ � + Nm(x)�0(m).

As in the proof of Theorem 1, 
 
= 0.
Employing the definition of convex hull we assert the existence of a positive integer N, nonnegative scalars 
1, . . . , 
N

with 
1 + · · · + 
N = 1, wi ∈ M(m) ⊂ Rp and � ∈ Nm(x)�0(m) such that

0 = 
�2
S

[∑N
i=1
i{z̃T(x)Mwi

z̃(x) + (bT
wi

z̃(x))2m(x)} + 	−1/2(
∫
S
{lm(x)m(x)}2 dx)−1/2

×{l2
m(x)m(x) − 2z̃T(x)HT (

∫
S

lm(x)m2(x)z̃(x)z̃T(x) dx)B−1z̃(x)}

]

+ � + �.

Consequently, there exists a symmetric matrix

P = �2
S

[
	−1/2

(∫
S

{lm(x)m(x)}2 dx
)−1/2

{P1 + PT
1 } −

N∑
i=1


iMwi

]
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with P1 = HT

(∫
S

lm(x)m2(x)z̃(x)z̃T(x) dx
)

B−1, a positive semi-definite matrix

Q = �2
S

N∑
i=1


ibwi
bT

wi
,

a positive definite matrix

U = �S	1/2
(


∫

S

{lm(x)m(x)}2 dx
)−1/4

HT ,

and scalars

� = �0



, d = −�




such that

0 = [z̃T(x)Qz̃(x) + {z̃T(x)Uz̃(x)}2]m(x) − z̃T(x)Pz̃(x) − d + �. (A.8)

The proof is now completed in a manner essentially identical to that of Theorem 1. �

Proof of Theorem 3. Again we give the proof only for extrapolation. In a manner very similar to that in the preceding
two proofs we find that there exists a symmetric matrix P, a positive semi-definite matrix Q, a positive definite matrix
U and a constant d such that on the set where m(x) > 0,

z̃T(x)Qz̃(x)m(x) + {z̃T(x)Uz̃(x)}2/3m1/3(x) − z̃T(x)Pz̃(x) − d = 0.

Therefore the minimizing m(x) is a solution to

a(x)m1/3(x) + b(x)m(x) − c(x) = 0, (A.9)

where a(x) = {z̃T(x)Uz̃(x)}2/3, b(x) = z̃T(x)Qz̃(x) and c(x) = z̃T(x)Pz̃(x) + d. Let m̃ = c − bm. Then, (A.9) becomes

m̃3 + a3

b
m̃ − a3c

b
= 0. (A.10)

Since a and b are positive almost everywhere in S, (A.10) has only one real solution. Applying Cardano’s formula for
cubic equations (Dunham, 1990), we obtain m̃(x) = k(x), where k is as at (24). Thus

m(x) = c(x) − k(x)

b(x)

on the set where m(x) > 0. The rest of the proof is now essentially identical to that of Theorem 1. �
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