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ABSTRACT: The distribution of dinoflagellate cyst (dinocyst) assemblages in surface sediment
samples from 677 sites of the northern North Atlantic, Arctic and sub-Arctic seas is discussed
with emphasis on the relationships with sea-surface parameters, including sea-ice cover, salinity
and temperature of the coldest and warmest months. Difficulties in developing a circum-Arctic
data base include the morphological variation within taxa (e.g. Operculodinium centrocarpum,
Islandinium? cezare and Polykrikos sp.), which probably relate to phenotypic adaptations to
cold and/or low salinity environments. Sparse hydrographical data, together with large interannual
variations of temperature and salinity in surface waters of Arctic seas constitute additional limitations.
Nevertheless, the use of the best-analogue technique with this new dinocyst data base including 677
samples permits quantitative reconstruction of sea-surface conditions at the scale of the northern
North Atlantic and the Arctic domain. The error of prediction calculated from modern assemblages is
±1.3 °C and ±1.8 °C for the temperature of February and August, respectively, ±1.8 for the salinity,
and ±1.5 months yr−1 for the sea-ice cover. Application to late Quaternary sequences from the
western and eastern subpolar North Atlantic (Labrador Sea and Barents Sea) provide reconstructions
compatible with those obtained using the previous dinocyst data base (n = 371), which mainly
included modern data from the northern North Atlantic. Copyright  2001 John Wiley & Sons, Ltd.
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Introduction

Organic-walled dinoflagellate cysts, or dinocysts, are useful
proxies for the reconstruction of past sea-surface conditions,
particularly in high-latitude marine environments. In contrast
to siliceous or carbonate microfossils, dinocysts are generally
well preserved in sediments affected by dissolution because
they are composed of highly resistant refractory organic
matter. Some dinocysts can be affected by oxidation of
their organic wall under specific circumstances, in pelagic
sediments with low accumulation rates (e.g. Zonneveld et al.,
2001), but preservation in shelf and slope sediments is usually
excellent (e.g. McCarthy et al., 2000). Moreover, dinoflagellate
populations may thrive despite extremely cold conditions, and
relatively abundant dinocysts can be found in sediments of
most circumpolar environments of both hemispheres (e.g.
Mudie, 1992; Harland and Pudsey, 1999). The encystment
and dormancy period, which characterises the life cycle of
many dinoflagellates in relation to their sexual reproduction,
undoubtedly constitutes an adaptive strategy to disperse
and survive in environments marked by seasonally adverse
conditions (e.g. Dale, 1983, 1996). The encystment strategy
together with heterotrophism of some taxa probably explains
how dinoflagellates are able to occupy polar seas where
extensive sea-ice cover prevails for a large part of the year
and restricts vegetative activity based on autotrophy. Thus,
dinoflagellates occupy a wide range of marine environments
with respect to temperature, sea-ice cover and salinity, and
diversified dinocyst assemblages accordingly can be recovered
from high-latitude marine basins and epicontinental seas.

Previous studies of dinocysts in surface sediments from the
northern North Atlantic and adjacent basins demonstrated
close relationships between the distribution of assemblages
and sea-surface conditions, notably temperature, salinity and
seasonal duration of sea-ice cover (e.g. Harland, 1983; Turon,
1984; Mudie and Short 1985; Rochon and de Vernal, 1994;
Matthiessen, 1995; Kunz-Pirrung, 1998). On these grounds,
dinocyst data were used for quantitative reconstruction based
on the modern analogue technique (de Vernal et al., 1993a,
1994, 1997; Rochon et al., 1999). They permitted quantitative
estimates of late Quaternary sea-surface temperature, salinity
and sea-ice cover along the continental margins of eastern
Canada (de Vernal et al., 1993b, 1996; Levac and de Vernal,
1997; Levac et al., 2001) and western Europe (Rochon et al.,
1998; Eynaud, 1999; Grøsfjeld et al., 1999). They also were
used to reconstruct sea-surface conditions throughout the
northern North Atlantic during the Last Glacial Maximum
(de Vernal et al., 2000). The palaeoceanographic records
available from dinocyst data are particularly interesting from
an ocean dynamics viewpoint because they permit the
reconstruction of sea-ice cover that regulates the albedo
and energy exchange at the water–atmosphere interface (de
Vernal and Hillaire-Marcel, 2000). These records also enable
evaluation of the potential density of surface waters, calculated
from temperature and salinity estimates, which may help to
constrain variation in the vertical structure of water masses
when combined with data from isotopic measurements in
planktonic and benthic foraminifers (e.g. Hillaire-Marcel et al.,
2001a,b).

In order to enlarge the domain of the dinocyst-based
reconstructions for the study of the ocean dynamics in
circum-Arctic regions, we have collectively undertaken the
enlargement of the northern North Atlantic dinocyst data base
to a multibasin scale with the addition of modern samples from
the Arctic and sub-Arctic seas, and subpolar North Pacific.
Workshops held in 1999 and 2000 helped the development

of a standardised taxonomy, which was indispensable prior to
combining data sets established on regional scales in different
laboratories and to build the circum-polar data base. Here,
we present the updated dinocyst data base that includes the
previously published 371 assemblage counts from the northern
North Atlantic (de Vernal et al., 1997; Rochon et al., 1999), to
which are now added data from the Laptev Sea (Kunz-Pirrung,
1998, this issue), the Bering and Chukchi seas (Radi et al.,
this issue), the Irminger Sea (Boessenkool et al., this issue), the
Barents Sea (Voronina et al., this issue), the Canadian Arctic
(Hamel, 2001; Mudie and Rochon, this issue), the Norwegian
coasts (Grøsfjeld and Harland, this issue), and many sites
from the northern North Atlantic and Kara Sea (Plate 1 and
Fig. 1). The new data base comprises a total of 677 reference
sites. In the present paper, we report on the particularities
of this data base with respect to taxonomy and hydrographic
conditions. We report on the procedure developed using the
best-analogue method for the reconstruction of past sea-surface
salinity, temperature and sea-ice cover and, finally, we discuss
the uses and limitations of such an approach with reference to
examples of late Quaternary reconstructions. One example is
from the Labrador Sea in the northwest North Atlantic, and the
other from the Barents Sea in an area close to the boundary
between Arctic waters and the northeastern end-member of
the North Atlantic drift.

The new circum-Arctic data base

The dinocyst data

The standardisation of laboratory procedures and taxonomy
is a prerequisite to the development of joined data bases.
The protocol for preparation used for all samples of the data
base can be found in de Vernal et al. (1999) or Rochon
et al. (1999), for example. It consists simply of HCl and HF
treatments of the greater than 10 µm or 7 µm fraction, and
avoids oxidising treatment that may affect the preservation
of organic-walled cysts (e.g. Marret, 1993). The dinocyst
nomenclature conforms to Head (1996a), Rochon et al. (1999)
and Head et al. (this issue). Three taxa that were not included
in the northern North Atlantic data base (de Vernal et al.,
1997; Rochon et al., 1999) have been added to the n = 677
data base (Table 1). They include cysts of Polykrikos kofoidii,
which occurs in the Bering Sea (Radi et al., this issue), and
cysts belonging to the genus Polykrikos referred to as cyst of
Polykrikos sp. Arctic morphotype. This morphotype shows a
wide range of variation, but is distinguished by its smaller
size and reduced ornamentation in comparison to the cysts
of Polykrikos schwartzii. It has been described informally by
Kunz-Pirrung (1998) and Radi et al. (this issue), and seems
to be a characteristic taxon of Arctic environments (Fig. 2).
Other new taxa used for statistical treatment in the n = 677
data base include Quinquecuspis concreta, which has been
treated separately from other protoperidinioids, as it constitutes
a characteristic taxon of the North Pacific and Bering Sea.

Various morphotypes of Operculodinium centrocarpum (de
Vernal et al., 1989; Radi et al., this issue) also have been
distinguished in the data base because of significant variations
in the ornamentation of the cyst wall, and in the density, length
and shape of the processes. These morphotypes include the
form with short processes (e.g. Rochon et al., 1999), and the
morphotype cezare first described by de Vernal et al. (1989)
from post-glacial Champlain Sea sediments of Quebec. The
latter constitutes the end member of a gradational lineage
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Plate 1 Location map of surface sediment samples used to establish the reference dinocyst data base. The circles correspond to references sites of
the ‘n = 371’ data base as published by de Vernal et al. (1997) and Rochon et al. (1999). The squares correspond to the additional reference sites
included in the ‘n = 677’ data base. The modern sea-ice cover (in months yr−1 with >50% of sea-ice concentration) is illustrated after data sets
provided by the National Climate Data Center (NCDC) in Boulder, Colorado, which span the years 1953 to 1990. Note that the NCDC data set is
incomplete for some epicontinental areas such as the Okhotsk Sea (no data reported) and the Gulf of St Lawrence (data extrapolated after
Markham, 1980). Note also that interpolation for mapping was done using a window of 3°, which results in smoothing of the very sharp sea-ice
gradients along the polar front
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Figure 1 Map showing the location of reference sites (dots), the main sea-ice limits and surface currents. The dark grey zone corresponds to
quasi-perennial sea-ice with more than 11 months/yr−1 of sea-ice cover greater than 50% and the light grey zone illustrates the area occupied by
0–11 months/yr−1 of sea-ice. The isobaths correspond to 200 and 1000 m water depth. The arrows illustrate schematically the surface currents in
the North Atlantic and adjacent polar seas (white arrows for warm currents from the south, and black arrows for cold currents)

with the almost complete disappearance of processes. Other
specimens of O. centrocarpum have been assigned to an Arctic
morphotype (Fig. 3). This morphotype is relatively frequent and
shows a morphology intermediate between O. centrocarpum
sensu Wall & Dale 1966 and O. centrocarpum morphotype
cezare. It is distinguished by processes that are imperfectly
developed and has a distribution that is of low density. It
corresponds to O. centrocarpum type B described from the
Champlain Sea sediment (de Vernal et al., 1989). The Arctic
and cezare morphotypes probably represent morphological
gradation of the same taxon. They seem to characterise
Arctic and cold environments, whereas O. centrocarpum
sensu Wall & Dale 1966 appears more ubiquitous (Fig. 3).
Although these morphotypes were distinguished in the raw
data base, they remain grouped for statistical treatment for
two main reasons. First, the n = 371 data base (Rochon et al.,
1999) may include specimens belonging to the Arctic and
cezare morphotypes of Operculodinium centrocarpum that
were overlooked when initial counts were made. Second,
because the morphological variations of Operculodinium
centrocarpum are gradational, the identification of various

morphotypes is a rather subtle and subjective matter, and it
would be impossible to ensure consistency in relative counts
from one analyst to another. Thus, although the morphological
variations in O. centrocarpum very probably have ecological
significance, we have grouped all morphotypes together
for data treatments (cf. Table 1). It must be noted finally
that we use the name O. centrocarpum not in the strict
sense but according to Quaternary palynological custom.
Operculodinium centrocarpum was first described from the
Miocene of Australia (Deflandre and Cookson, 1955) and is
larger and more robust than Quaternary forms (Head, 1996b;
Rochon et al., 1999).

Spiny round brown cysts occur frequently in our high-
latitude assemblages and represent another taxonomically
problematic group. These cysts are referred to as Algidas-
phaeridium? minutum var. minutum and Algidasphaeridium?
minutum var. cezare in the n = 371 data base (Rochon et al.,
1999), and respectively as Islandinium minutum and Islan-
dinium? cezare in the present work, following Head et al. (this
issue). A third species, Echinidinium karaense, also occurs in
our high-latitude assemblages (Head et al., this issue), and is
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Table 1 List of dinocyst taxa systematically counted and reported in the raw n = 677 data base under four-letter codes. A total of 30 taxa (codes in
bold) are used for statistical treatment. Some of these taxa result from grouping as indicated by notes in the table. The arrows point to taxa occurring
currently in Arctic and sub-Arctic seas for which the distribution is illustrated in Figs 2–5 and Plate 2

Taxa Code Notes

cf. Alexandrium tamarense type cyst Alex
Ataxiodinium choane Atax
Bitectatodinium tepikiense Btep
Impagidinium aculeatum Iacu
Impagidinium pallidum → Ipal
Impagidinium paradoxum Ipar
Impagidinium patulum Ipat
Impagidinium sphaericum Isph
Impagidinium strialatum Istr
Impagidinium spp. Ispp
Lingulodinium machaerophorum Lmac
Nematosphaeropsis labyrinthus → Nlab
Operculodinium centrocarpum sensu Wall & Dale 1966 → Ocen
O. centrocarpum sensu Wall & Dale 1966 - short
processes

Ocss Grouped with O. centrocarpum sensu Wall & Dale 1966

Operculodinium centrocarpum - Arctic morphotype → Oarc Grouped with O. centrocarpum sensu Wall & Dale 1966
Operculodinium israelianum Oisr
Operculodinium cf.janduchenei Ojan
Operculodinium centrocarpum - morphotype cezare Ocez Grouped with O. centrocarpum sensu Wall & Dale 1966
Pyxidinopsis reticulata Pret
Spiniferites membranaceus Smem
Spiniferites delicatus Sdel Grouped with S. membranaceus
Spiniferites elongatus → Selo
Spiniferites ramosus Sram
Spiniferites belerius Sbel Grouped with S. membranaceus
Spiniferites bentorii Sben
Spiniferites bulloideus Sbul Grouped with S. ramosus
Spiniferites frigidus Sfri Grouped with S. elongatus
Spiniferites lazus Slaz
Spiniferites mirabilis-hyperacanthus Smir
Spiniferites spp. Sspp
Cyst of Pentapharsodinium dalei → Pdal
Islandinium minutum → Amin
Islandinium? cezare → Amic
Echinidinium karaense Aspp Grouped with Islandinium? cezare
Brigantedinium spp. → Bspp
Brigantedinium cariacoense Bcar Grouped with Brigantedinium spp.
Brigantedinium simplex Bsim Grouped with Brigantedinium spp.
Protoperidinioids Peri
Lejeunecysta sabrina Lsab Grouped with Protoperidinioids
Lejeunecysta oliva Loli Grouped with Protoperidinioids
Selenopemphix nephroides Sele
Xandarodinium xanthum Xand Grouped with Protoperidinioids
Selenopemphix quanta → Squa
Cyst of Protoperidinium nudum Pnud Grouped with S. quanta
Trinovantedinium applanatum Tapp
Trinovantedinium variabile Tvar
Votadinium calvum Vcal Grouped with Protoperidinioids
Votadinium spinosum Vspi Grouped with Protoperidinioids
Cyst of Protoperidinium americanum Pame
Quinquecuspis concretaa Qcon
Cyst of Polykrikos schwartzii Psch
Cyst of Polykrikos sp.-Arctic morphotypea → Parc
Cyst of Polykrikos kofoidiia Pkof

a Not recorded in the n = 371 data base.

distinguished from Islandinium? cezare principally by subtle
differences in process morphology. Echinidinium karaense was
not distinguished from Islandinium? cezare in the n = 371 data
base (Rochon et al., 1999), and although it is included in the

n = 677 data base, it cannot be used separately in the present
statistical analyses. Here, we use the name Islandinium? cezare
sensu lato when referring collectively to Islandinium? cezare
sensu stricto and Echinidinium karaense.
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Figure 2 Distribution maps of the percentages of cysts of Polykrikos schwartzii (upper left panel) and Polykrikos sp. Arctic morphotype (upper
right), and illustration of representative cyst specimens (lower panel). (1) Cyst of Polykrikos schwartzii as figured in Harland, 1981,1983, Firth of
Forth (Scotland), specimen MPK2600. (2) Cyst of Polykrikos sp. Arctic morphotype: Core 9722-05B (0–1 cm), UQP 1246-3, M31/1. (3) Cyst of
Polykrikos sp. Arctic morphotype: Core 9722-01E (0–1 cm), UQP 1246-6, E29/1. (4) Cyst of Polykrikos sp. Arctic morphotype: Core 9722-01E
(0–1 cm), UQP 1246-6, C39/3-4. Scale bars on the photographs are 10 µm
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Figure 3 Distribution maps of the percentages of Operculodinium centrocarpum sensu Wall & Dale 1966 (upper left panel) and Operculodinium
centrocarpum Arctic morphotype (upper right panel), and illustration of the respective morphology of the different morphotypes (lower panel).
(1) Operculodinium centrocarpum sensu Wall and Dale 1966: slide HU-90-013-006, UQP 482-3, E26/4. (2) Operculodinium
centrocarpum—short processes form: slide HU-90-013-017 (0–1 cm), UQP 482-6, N25/4. (3) Operculodinium centrocarpum Arctic morphotype
(type B of de Vernal et al., 1989), from Saint-Césaire, Champlain Sea, Quebec, UQP 200-6B, M47/2. (4) Operculodinium centrocarpum
morphotype cezare, from Saint-Césaire, Champlain Sea, Quebec, UQP 200-6B, O44/0. Scale bars on the photographs are 10 µm

Most surface sediment samples included in the data base
were collected by box or gravity coring and correspond to the
top first centimetre of sediment. Samples from piston core were
not used because the surface sediment is often missing. In case
of doubt concerning the ‘recent’ age of the surface sediment,

samples were discarded from the data base. More information
concerning the sampling and sediment characteristics can be
found in Rochon et al. (1999) and manuscripts reporting on
regional data sets (Kunz-Pirrung, 1998; this issue; Radi et al.,
this issue; Voronina et al., this issue; Hamel, 2001; Mudie
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and Rochon, this issue; Grøsfjeld and Harland, this issue). The
systematic identification and count of dinocysts was performed
by scanning at least three randomly distributed horizontal fields
on the palynological slides. The number of fields scanned was
determined depending upon the concentration of dinocysts
in the slide. Ideally, a scan was done until a sum of at
least 400 specimens was reached. In samples containing
sparse assemblages, the entire slide was scanned. On average,
400 specimens were identified and counted in each sample.
However, lower counts were performed for many samples;
among the 677 samples retained in the data base, 40 have
counts ranging 25–100. The raw dinocyst counts include
53 taxa, among which 30 were used for statistical treatment
after grouping (cf. Table 1). The raw dinocyst counts and
percentages of the 30 taxa selected in the 677 surface sediment
samples of the updated data base presented here can be found
on the websites of GEOTOP (http://www.geotop.uqam.ca/)
and the PANGAEA data bank of the Alfred Wegener Institute
for Polar and Marine Research (http://www.pangaea.de).

The hydrographic data

Sea-ice cover was compiled from data provided by the
National Climate Data Center (NCDC) in Boulder, Colorado,
comprising measurements for a 1° by 1° grid and spanning
1953 to 1990. Mean sea-ice cover is expressed here as the
number of months per year with sea-ice concentration greater
than 50% (see also de Vernal and Hillaire-Marcel, 2000;
Plate 1). It should be noted that the NCDC data cover most of
the Northern Hemisphere except for a few marine basins such
as the Okhotsk Sea and the Estuary and Gulf of St Lawrence. In
the case of the Estuary and Gulf of St Lawrence, the sea-ice data
are from Markham’s (1980) atlas and consist of a compilation
after a couple of years of observation.

Sea-surface (0 m depth) temperature and salinity are com-
piled from data published as CD-roms by the National Ocean
Data Center (NODC, 1994). For most sites, simple averages
were calculated from all values included within a radius of
30 nautical miles around the sites. A radius of 60 nautical
miles was used in areas where instrumental measurements are
sparse (<2). In the North Atlantic Ocean and adjacent subpolar
seas, hydrographic data are abundant enough to develop an
accurate data base that includes the mean and standard devi-
ation for sea-surface temperature and salinity for the coldest
and warmest months, i.e. February and August.

In the Arctic domain, the establishment of the reference
hydrographic data base is problematic because measurements
are extremely sparse in many areas, and multiyear synoptic
data are rare. In many instances, data are too scattered, even
at a radius of 60 nautical miles, to obtain a sensible average.
In such cases, the extrapolated data fields for sea-surface
temperature and salinity provided by NODC (1994) are used
instead of compiled data. For a few Arctic sites, it was possible
to compare means from instrumental data and the extrapolated
data fields. As for the sea-surface temperature in August,
both extrapolated and actual data yield consistent information
within the range of interannual variability. However, regarding
the sea-surface salinity in August, data revealed extremely
variable conditions from one year to another, and the
comparison of means with extrapolated data fields revealed
large discrepancies at many sites, especially in the low-salinity
(<30) domain. This is particularly critical in the Canadian
Arctic Archipelago, where data are extremely sparse (cf.
Mudie and Rochon, this issue). By default, we have used
the extrapolated data fields for sea-surface salinity at most

sites from the Arctic seas, i.e. where no data are available, or
where there is too large an uncertainty owing to low numbers
of measurements and a large standard deviation around the
average (σ > 5). We also excluded from the data base all sites
with salinity below 17, occurring in nearshore and shallow
environments because of too large variability or uncertainty in
actual hydrographic conditions. This omission unfortunately
constrains the use of the data base for reconstructions in Arctic
estuarine environments or their late-glacial analogues.

In the Arctic domain, data for the coldest month (February)
are particularly rare and, for many areas, no extrapolated data
field is available. In the event of no data availability, we have
used an extrapolated value. We have assumed temperature
at the freezing point in February in as much as the sites are
occupied by extensive winter sea-ice, and we have used the
overall relationship between winter and summer salinity to
make salinity estimations.

In addition to the NODC data sets published in 1994, there
are hydrographic data available on regional scales, which
could have been used locally in some instances. These data
are important for validating the estimates obtained in new
study areas (see Mudie and Rochon, this issue). However, in
order to keep the hydrographic data base internally consistent,
we have preferred to use the compiled data or extrapolated
data field provided by NODC (1994). The only exception is the
Estuary and Gulf of St Lawrence area, which is not covered by
NODC (1994) and where very large numbers of hydrographic
measurements were made until 1990 (data provided by
the Department of Environment-Canada), allowing reliable
compilation.

There also are uncertainties with respect to the time
interval that is respectively represented by the hydrographic
measurements and by microfossil assemblages in the surface
sediment sample. The hydrographic data correspond to
averages established after measurements made during the last
decades, whereas the dinocyst spectra from surface sediment
samples may include populations representative of a couple
of years to a millennium depending upon the sedimentation
rate and the biological mixing depth at the sampling sites.
This is a problem common to all ‘modern’ geochemical
or micropalaeontogical data bases established from surface
sediment samples.

The overall temperature, salinity and sea-ice cover
domains represented in the n = 371 and n = 677 data
bases are illustrated in Fig. 4. Tables reporting the mean
sea-ice cover, temperature (August and February) and
salinity (August and February) with standard deviations
when available are archived on the websites of GEOTOP
(http://www.geotop.uqam.ca/) and the data bank PANGAEA
of the Alfred Wegener Institute for Polar and Marine Research
(http://www.pangaea.de).

Relationships between dinocyst assemblages
and hydrographic data with special attention
to the Arctic domain

The updated dinocyst data base includes data from mid- to
polar northern latitudes. The distribution of assemblages in
the northern North Atlantic Ocean has been documented
previously (de Vernal et al. 1997; Rochon et al., 1999)
and here we focus mostly on assemblages specific to the
polar domain. In general, the species diversity is much
larger in assemblages from lower latitudes than from Arctic
environments. Of the 30 taxa retained within the updated
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Figure 4 Relationships between sea-surface temperature in August
and sea-surface temperature in February (a), sea-surface salinity in
August (b) and sea-ice cover (c). The circles correspond to references
sites of the ‘n = 371’ data base as published by de Vernal et al.
(1997) and Rochon et al. (1999), whereas the squares correspond to
the additional reference sites included in the ‘n = 677’ data base (see
Plate 1). Temperature is in degree celsius and sea-ice cover in
months/year

n = 677 data base, only 11 are frequent in the Arctic seas
(Figs 2, 3, 5 and 6, and Plate 2).

Some of the taxa occurring in the Arctic seas are cosmopoli-
tan and appear to tolerate a wide range of environmental
conditions. Operculodinium centrocarpum sensu Wall &
Dale 1966 is particularly ubiquitous, although morphologi-
cal variations in Arctic environments (see Operculodinium

centrocarpum Arctic morphotype; Fig. 3) might be associated
with phenotypes adapted to low salinity and cold environ-
ments, or to reduced season of growth and light levels.
Brigantedinium spp. is another taxon that seems to be particu-
larly cosmopolitan, especially in epicontinental environments
(Fig. 5 and Plate 2). Its distribution does not show any prefer-
ence with regard to temperature or salinity, nor with nutrient
availability or productivity (Devillers and de Vernal, 2000).
It probably is an opportunistic genus. The cyst of Pentaphar-
sodinium dalei is another ubiquitous taxon, but it seems to
be more specific of sub-Arctic environments and has limited
occurrence in the coldest polar regions (Fig. 6 and Plate 2).

Other cosmopolitan taxa have limited occurrence in
the coldest Arctic seas. For example, Nematosphaeropsis
labyrinthus and Spiniferites elongatus are ubiquitous in
middle-high latitudes, but they show some preference for
open oceanic environments in the temperate to subpolar
domains. Selenopemphix quanta also shows preference for the
temperate to subpolar domain, and occurs mainly in neritic
environments where salinity can be relatively low (Fig. 5 and
Plate 2).

There are, however, taxa that are apparently more specific
to Arctic and sub-Arctic seas. This is the case of Islandinium
minutum, and more especially Islandinium? cezare s.l., which
are abundant mainly in assemblages of the continental
margins where seasonal sea-ice cover is a conspicuous feature
(Head et al., this issue; Fig. 5 and Plate 2). The polar taxa
also include Impagidinium pallidum, recorded as having
maximum occurrence in the Greenland Sea, where surface
waters are cold and characterised by relatively high salinity
(Fig. 6 and Plate 2), and finally, the cyst of Polykrikos sp.
Arctic morphotype, which occurs almost exclusively in shelf
environments of the Canadian Arctic and Laptev and Kara seas
(Fig. 2).

Principal component analysis was performed after logarith-
mic (ln) transformation of percentage data for the 30 taxa
selected using the software of Guiot and Goeury (1996). A
logarithmic transformation is useful in as much as the dom-
inant taxa are often cosmopolitan, whereas accompanying
taxa generally have more specific environmental requirements
and more restricted distributions. The first principal compo-
nent (PC1), which explains 48.9% of the total variance, shows
an opposition between the polar taxa, including the cyst
of Polykrikos sp. Arctic morphotype, Islandinium minutum,
Islandinium? cezare s.l., Brigantedinium spp. and Impagi-
dinium pallidum on one side, and most other taxa on the
other side (Fig. 7). Scores of the first component reveal a
distribution closely related to latitudinal gradients and water
mass boundaries (Plate 3a), positive values being related to
open ocean temperate–subpolar waters, and negative values
corresponding to Arctic seas and areas that are marked by
polar currents and extensive sea-ice. Actually, PC1 correlates
positively with the temperature of August (R = 0.802) and
February (R = 0.798) and with salinity (R = 0.559), whereas
it correlates negatively with the sea-ice cover (R = 0.728)
according to linear regression. Better fits can be obtained with
polynomial of order 2 or 3 relationships. The second compo-
nent (PC2) explains 22.2% of the variance and corresponds to
an opposition between both Arctic and temperate taxa on one
side, and taxa cosmopolitan in the sub-Arctic domain, such
as the cyst of Pentapharsodinium dalei, Spiniferites elongatus
and Operculodinium centrocarpum, on the other side. The
geographical distribution of PC2 scores shows no relationship
with temperature or salinity (Plate 3b). It probably is related to
the distribution of another parameter, which could be linked,
for example, to productivity, nutrient distribution or the trophic
structure of planktonic populations (see also Devillers and de
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Plate 2 Relationships between the percentages of the main dinocyst taxa occurring in the Arctic seas and the August sea-surface temperature and
salinity, and the sea-ice cover. The distribution of the percentages of the other North Atlantic taxa (cf. Table 1) as illustrated in de Vernal et al.
(1997) and Rochon et al. (1999) from the n = 371 data base is basically unchanged. In the n = 677 data base, the distribution of the additional
taxa such as the cyst of Polykrikos kofoidii and Quinquecuspis concreta is restricted to the Bering Sea (for information on their regional
distribution, see Radi et al., this issue). The geographical location of the spectra is indicated as follows: blue indicates data from the Arctic seas
(squares = Canadian Arctic, including Beaufort Sea, Hudson Bay, Baffin Bay, and the Canadian Archipelago Channels; circles = Barents Sea;
crosses = Kara Sea and Laptev Sea; diamonds = western Arctic, including the Chukchi Sea and the Siberian Sea), and red indicates data from the
North Atlantic Ocean and adjacent basins (squares = Estuary and Gulf of St Lawrence; circles = Norwegian–Greenland seas;
crosses = southeastern Canadian and eastern American margins; diamonds = all other sites from northwest to northeast North Atlantic)
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Figure 5 Distribution maps of the percentages of Brigantedinium spp. (upper left panel), Islandinium minutum (upper right panel), Islandinium?
cezare s.l. (lower left panel) and Selenopemphix quanta (lower right panel).

Vernal, 2000). As a matter of fact, all taxa with negative load-
ing of both PC1 and PC2 belong to the Polykrikaceae (cyst of
Polykrikos sp.) or Protoperidiniaceae (Brigantedinium sp. and
Islandinium minutum), which relate to a heterotrophic rather
than autotrophic productivity (e.g. Taylor, 1987; Head et al.,
this issue).

Quantitative estimates of past sea-surface
conditions based on the best-analogue
method

Many techniques for quantitative reconstructions of past envi-
ronmental conditions have been developed during the past

decades. They are based on multiple regression techniques
(e.g. Imbrie and Kipp, 1971), modern analogue approaches
(e.g. Hutson, 1980; Prell, 1985; Guiot, 1990; Pflaumann et al.,
1996; Waelbroeck et al., 1998), or neural network methods
(e.g. Malmgren and Nordlund, 1997; Peyron et al., 1998,
2000). Tentative estimation of past sea-surface conditions
based on dinocyst assemblages has been made using sev-
eral approaches, including canonical regressions and variants
of the modern analogue techniques (de Vernal et al., 1994),
and the artificial neural network technique (Peyron and de
Vernal, this issue). The artificial neural network approach gen-
erally yields accurate reconstruction, but may give estimates
outside the range of training data sets by extrapolation in the
case of non-analogue situations, as is the case with regression
techniques. In contrast, the analogue approach permits identi-
fication of non-analogue situations and avoids reconstruction
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Figure 6 Distribution maps of the percentages of Pentapharsodinium dalei cysts (upper left panel), Spiniferites elongatus (upper right panel),
Impagidinium pallidum (lower left panel) and Nematosphaeropsis labyrinthus (lower right panel)

when the degree of uncertainty appears too high. Boot-
strap neural network approaches also permit non-analogue
situations to be identified, but in a less straightforward way.
The artificial neural network method and its application for
reconstructing past sea-surface parameters based on dinocyst
data are fully developed by Peyron and de Vernal (this issue).
Here, we present the procedure using the best-analogue tech-
nique that we adapted from the software of Guiot and Goeury
(1996).

When developing a technique for quantitative estimates
of a given parameter, a means to identify the most reliable
procedure consists of validations, i.e. tests to quantify how
accurately a given technique yields a reconstruction; in this
case one that matches present-day environmental conditions.
Many validation exercises were performed using successive
updates of the dinocyst data base (de Vernal et al., 1993,
1994, 1997; Rochon et al., 1999). From these exercises, it

appears that logarithmic transformation of percentages is most
powerful for the identification of the best analogues with
respect to hydrographic conditions. This is because dominant
species in the assemblages generally are the most ubiquitous,
whereas the accompanying taxa often have more narrow
ecological affinities. In other words, the presence and relative
occurrence of accompanying taxa appear to be most diagnostic
of environmental conditions.

The procedure we have adapted from the Guiot and
Goeury (1996) software, developed initially for the analyses of
pollen data, includes a few adjustments. In particular, relative
abundance is expressed per thousand, instead of per cent in
order to deal with whole numbers and to avoid decimals,
which yield negative values when they are logarithmically
transformed. One (1) is added to the frequency of each taxon
in order to deal with values greater than zero, and the relative
frequencies of taxa range from 1 to 1000. Another minor
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Figure 7 Loading of the 30 selected taxa in the 677 dinocyst assemblages of the reference dinocyst data base on the basis of the first two principal
components

transformation consists of adjusting the frequency data ranging
between 2 and 5 (i.e. 0.2 and 0.5%) to the value of 5 in
order to make a better discrimination between absence (1) and
presence (>5). This transformation is further justified because
of the count limit, which occasionally is as low as 100 or 200
specimens. The zero elements are thus replaced by a value
lower than the precision under which data were produced (cf.
Kucera and Malmgren, 1998). After these transformations, the
distance (d) between the spectrum to be analysed (t) and the
spectra in the reference data base (i) is calculated based on the
difference in relative frequency (f ) for each taxon (j = 1–30)
as follows

d =
m∑

j=1

Wj2[ln fij – ln ftj]2

In the above equation, W is a factor that may be used to
weight the taxa. In the case of dinocyst assemblages, no
weighting factor is used as we have not demonstrated from
validation exercises that selectively weighting taxa on the basis
of principal component analyses or on the basis of empirically
defined ecological affinities can improve the accuracy of the
reconstruction.

The distances calculated from the above equation permit us
to select samples in the reference data base as best analogues.
Here, we have searched for five analogues. The hydrographic
data corresponding to these analogues are used to calculate
an average that is weighted inversely to the distance of
the analogues. This average constitutes the most probable
estimates, and the results are reported within a confidence

interval defined from hydrographic data corresponding to these
five best analogues. It is of note that a threshold value is defined
on probabilistic grounds (i.e. a Monte-Carlo approach) in order
to identify a non-analogue or poor-analogue situation. If the
distance of the closest analogue is higher than the threshold
calculated, no reconstruction is made. In the case of the
n = 677 data base, the distance between pairs randomly taken
in the data base averages 95.51, with a standard deviation
of 42.41. The average minus standard deviation gives a
threshold distance below which we consider the similarity
to be significant. In the case of the n = 677 data base, the
threshold distance is thus 53.1. For comparison, the n = 371
data base led to the calculation of a mean random distance of
82.9 ± 36.4 for a threshold value of 46.5. The slightly lower
threshold value for the n = 371 data base than for the n = 677
data base results from the smaller size of the matrix with
respect to both number of taxa and number of spectra.

The validation exercise permits assessment of the degree of
accuracy of sea-surface reconstruction (Plate 4). It is performed
on each surface sample for which we seek the best five
analogues excluding the sample itself. It enables one to test
the coherency of the spectra versus hydrographic parameters.
Such a technique, also called leaving-one-out may, however,
result in an underestimation of the error compared with the
split-sampling technique that involves random division of the
data set (cf. Birks, 1995). The reconstruction of four parameters
is illustrated in Plate 4: the sea-surface temperature of the
coldest and warmest month (February and August), the salinity
for August and the seasonal extent of sea-ice cover. These
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parameters have been shown to be most determinant on
the distribution of dinoflagellate populations and dinocyst
assemblages. It is of note that other validation exercises were
done using seasonal (i.e. winter and summer) or annual
means of temperature and resulted in reconstructions not
as accurate as the ones obtained for monthly temperature
means for the warmest and coldest month. This points to the
fact that the annual cycle of temperature undoubtedly exerts
a determinant control on the dinoflagellates and their cyst
distribution. Seasonality certainly plays a major role in the life
cycle of dinoflagellates, i.e. on the duration of vegetative versus
encysted stages. Seasonality can be viewed as the difference
between the temperature of the warmest and coldest months,
or as the length of the season during which metabolic activities
are interrupted, notably because of limited light owing to sea-
ice cover. This would explain why the seasonal duration
of sea-ice cover is one of the parameters that can be best
reconstructed using dinocyst assemblages.

From the validation exercises, the linearity of the relationship
around a slope of one over one, and the coefficients of
correlation between estimates and observations provide a first
indication of the reliability of the approach (see Plate 4). The
degree of accuracy of the reconstruction is further constrained
by the standard deviation of the difference between estimates
and observations, which also is referred to as the root mean
square error of prediction (RMSEP), and would be the best
way to assess the error rate and to compare methods (cf.
ter Braak and van Dam, 1989; Malmgren et al., 2001). As
shown in Plate 4, the degree of accuracy or prediction error
establishes at ±1.3 °C and ±1.8 °C for the temperature of
February and August respectively, ±1.8 for the salinity, and
±1.5 months yr−1 for the sea-ice cover.

On the whole, the validation exercise for the n = 677 data
base yields results that are similar to those of the validation
made for the n = 371 data base (de Vernal et al., 1997; Rochon
et al., 1999). However, in the case of the n = 677 data base,
there is a larger error for salinity, particularly in the low salinity
domain that corresponds primarily to data from the Canadian
Arctic and the Russian Arctic. The apparently poor accuracy of
salinity estimates in this domain can be explained by the high
variability of this parameter and by the lack of accuracy of
instrumental data (see above). Actually, about half the spread
of estimated versus observed salinity values can be attributed
to inaccurate hydrographic measurements. In summary, the
validation exercises reveal high accuracy of the approach
for the reconstructions of sea-surface conditions, although
some reservation has to be exercised when reconstructing low
salinity in Arctic environments.

Examples of application

Two examples, using the procedure described above with
the n = 371 and n = 677 data bases, are treated here. The
first example is based on a core collected from the northern
Labrador Sea (HU-84-030-021; de Vernal and Hillaire-Marcel,
1987). The coring site is located in the northwestern part of
the North Atlantic, a domain well represented by the n = 371
data base. The second example is from the Barents Sea (core
PL96-112; Voronina et al., this issue), at the northeastern
limit of the area represented by the n = 371 data base.
These two examples are selected because they represent
distinct circum-Arctic areas. They also are selected because
the sediments in both cores are characterised by abundant
dinocysts, allowing statistically representative dinocyst counts.

The two examples illustrate the coherency or discrepancies of
palaeoceanographic estimates resulting from the use of the
two data bases and identify the strengths and weaknesses of
the method.

The northwest North Atlantic

The sedimentary sequence of core HU-84-030-021
(58°22.06′N, 57°30.42′W; water depth = 2853 m) spans the
past 20 000 yr. The core was collected on the continental
slope from the western Labrador Sea, where surface waters
are under the influence of an eastern branch of the West
Greenland Current (Fig. 8a). At the coring site, present-
day mean sea-surface temperature is 3.5 ± 0.4 °C and
6.8 ± 1.05 °C in February and August respectively, and the
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North Atlantic Ocean
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Figure 8 Core location and time series from the northwestern North
Atlantic (core HU-84-030-021; 58°22.06′N-57°30.42′W; 2853 m)
spanning the last 20 000 yr. (a) Location map for core
HU-84-030-021 showing the surface water circulation pattern, with
cold currents from the Arctic illustrated by black arrows (Baffin Land
Current = BLC; Labrador Current = LC; East Greenland
Current = EGC) and the warmer West Greenland Current (WGC)
illustrated by white arrows. (b) Summary diagram of dinocyst
assemblages for core HU-84-030-021. The chronological marks
indicated in the left margins of the diagrams correspond to
accelerator mass spectrometry (AMS) 14C ages on planktonic
foraminifers (Neogloboquadrina pachyderma left coiling). The ages
were normalised for a δ13C of 25‰ and corrected by −400 yr to
account for the air–sea difference (for stratigraphical information see
Hillaire-Marcel et al., 1994, or the GEOTOP website).
(c) Reconstruction of sea-surface parameters for core
HU-84-030-021. Sea-surface temperature is in °C. The dashed line
corresponds to the best estimates using the n = 371 data base, and
the solid line to the best estimates using the n = 677 data base with
the modern analogue technique protocol as described in the text. The
confidence interval calculated from the hydrographic values
corresponding to the five best analogues in the n = 677 data base is
shown by the grey zone. The distance of the best analogues is given
on the right of the diagram (dashed line for the n = 371 data base,
and solid line for the n = 677 data base). The arrows at the right
margin of the best analogue distance curve point to a non-analogue
situation using the n = 371 data base. Reconstructions for these two
spectra are presented only using the n = 677 data base
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Figure 8 (Continued)
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salinity averages 34.5 in August. Sea-ice cover develops
only exceptionally (mean sea-ice = 0.5 month yr−1). Modern
dinocyst assemblages are characterised by the dominance
of Nematosphaeropsis labyrinthus and Operculodinium
centrocarpum, as are most other assemblages from offshore
settings in the northwestern North Atlantic (cf. assemblage Va
in Rochon et al., 1999).

The stratigraphy of core HU-84-030-021 has been docu-
mented by de Vernal and Hillaire-Marcel (1987), and notably
by Hillaire-Marcel et al. (1994) (see also the GEOTOP web-
site). The stratigraphy shows a clear change in both lithology
and palynological assemblages at the glacial–interglacial tran-
sition, which is dated around 11 000 14C yr BP (Fig. 8b and
c). This transition is marked by a change from glaciomarine
sedimentation with abundant ice-rafting debris under cold
conditions, to epipelagic sedimentation under oceanic and
subpolar conditions. A major change in dinocyst assemblages
also is recorded at this time. The glacial interval dated prior to
ca. 11 000 14C yr BP generally is characterised by assemblages
dominated by Brigantedinium spp. and accompanied by Islan-
dinium minutum. Above the transition, the assemblages are
characterised by higher species diversity and the replacement
of Brigantedinium spp. by Operculodinium centrocarpum,
the cyst of Pentapharsodinium dalei and Nematosphaerop-
sis labyrinthus, which dominate the Holocene assemblages
(Fig. 8b). The reconstruction of sea-surface conditions using
both data sets reflects a major change at the glacial–interglacial
transition, with a sharp decrease in sea-ice cover extent
together with increasing temperature and salinity (cf. Fig. 8c).

In the post-glacial part of the record, the best analogues
are found regionally and the distances are approximately
identical whichever data base is used. The estimates are
the same for all parameters considered and both curves of
reconstruction are superimposed (Fig. 8c). In this case, it is
clear that the n = 371 data base provided suitable analogues
for reliable reconstructions. The use of the n = 677 data base
also allows reliable reconstructions. In the lower part of the
record, corresponding to the glacial episode, there are slight
discrepancies between estimates depending upon the data
base used. In general, the distance of analogues is slightly
larger with the n = 371 data base. Closest analogues are found
in the n = 677 data base, notably in the area of the North
Water polynya, northernmost Baffin Bay, and in the Laptev
Sea and northern Barents Sea, which were not represented
in the n = 371 data base. Nevertheless, reconstructions of
temperature and extent of sea-ice cover are almost identical
whether using the n = 677 or n = 371 data base. The main
discrepancy occurs in the reconstruction of salinity, which
yields slightly higher values and has more fluctuations with
the n = 677 data base. The n = 677 data base thus seems
to be more sensitive to salinity than the n = 371 data base.
Nevertheless, the reconstructions are consistent in as much as
they both indicate low salinity (<32) during the glacial interval.
Another point of interest in the record of the glacial interval is
the peak of gonyaulacalean cysts, including Bitectatodinium
tepikiense, that is recorded between 430 and 446 cm. The
assemblages in this interval have poor analogues in both data
bases, but particularly in the n = 371 data base, as the distance
for the closest analogue is above the threshold value for two
samples.

The Barents Sea

Core PL-96-112P (71°44.18N, 42°36.31E; 286 m), spanning
the past 8500 yr (Voronina et al., this issue), was collected on

the east Barents Shelf. This area is particularly interesting
from a palaeoceanographical point of view because it
presently constitutes the northernmost end-member of the
North Atlantic Drift, at the boundary with Arctic waters
flowing southward (see Fig. 9a; e.g. Loeng, 1991). At the
coring site, sea-surface temperature is 7.8 ± 1.9 °C and 1.8 °C
(σ unknown) in August and February respectively, with
salinity in August of 34.8 ± 0.2. Sea-ice cover develops
occasionally during the coldest years (mean sea-ice duration =
0.3 month yr−1).

The dinocyst assemblages from core PL-96-112 have a high
species diversity and generally are dominated by Operculo-
dinium centrocarpum, the cyst of Pentapharsodinium dalei,
and Spiniferites elongatus, these being accompanied notably
by Nematosphaeropsis labyrinthus and Brigantedinium spp.
(Fig. 9b). Throughout the sequence, the percentages of the
main taxa record some tenuous variations. The most distinct
trend, towards the top of the core, is the increased per-
centages of Pentapharsodinium dalei relative to a decrease
in the occurrence of Operculodinium centrocarpum. Other
variations in the assemblages that may be significant include
fluctuations in the percentages of Spiniferites elongatus, max-
imum occurrence of Nematosphaeropsis labyrinthus between
ca. 1500 and 3000 14C yr BP, and sporadic occurrences of
the cold water taxa Islandinium minutum and Impagidinium
pallidum.

Norwegian Sea

Novaya Zemlya

Kara Sea

Arctic Ocean

Barents Sea

White Sea

PL-96-112

Pechora Sea

Kola Peninsula

10° 20° 30° 40°
70°

80°

80°

70°

60°

50°

90°

Atlantic water currents
Arctic water currents
Core location
Extreme limit of sea-ice cover(a)

Figure 9 Location map and time series for Core PL96-112P, Barents
Sea (71°44.18N-42°36.31E; 286 m) spanning the past 8500 yr.
(a) Core location map showing the surface water circulation pattern.
(b) Summary diagram of dinocyst assemblages. The chronological
marks indicated in the left margins of the diagrams correspond to
accelerator mass spectrometry (AMS) 14C ages on biogenic
carbonates, which were normalised for a δ13C of 25‰ and corrected
by −460 yr to account for the regional air-sea difference (Voronina
et al., this issue). (c) Reconstruction of the sea-surface parameters.
Sea-surface temperature is in °C. The dashed line corresponds to the
best estimates using the n = 371 data base, and the solid line to the
best estimates using the n = 677 data base with the modern analogue
technique protocol as described in the text. The confidence interval
calculated from the hydrographic values corresponding to the five
best analogues of the n = 677 data base is shown by the grey zone.
The distance of the best analogues is given on the right of the diagram
(dashed line for the n = 371 data base, and solid line for the n = 677
data base)
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Figure 9 (Continued)

The reconstruction of sea-surface conditions in core PL-96-
112 relies on different sets of analogues depending upon the
data base considered (Fig. 9c). Both n = 371 and n = 677 data
bases yield close analogues, with distances much lower than
the threshold value, thus allowing estimations of hydrographic
parameters. However, the distance is slightly larger when
using the n = 371, the closest analogues being selected from
the few available sites in the Barents Sea, in addition to
sites from the Norwegian Sea and the Hudson Bay. When
using the n = 677 data base, closer analogues are found in
the Barents Sea and the eastern Arctic, in addition to sites
from the Bering Sea, whereas spectra from the Norwegian
Sea are selected only exceptionally. In spite of the different

selection of analogue spectra depending upon the data
base used, the estimates of sea-surface conditions appear
consistent. The variations in sea-ice cover and sea-surface
salinity are almost superimposed, and the trend of increasing
salinity recorded during the early–middle Holocene appears
significant. There are slight discrepancies concerning the
estimated temperatures. However, these discrepancies are not
very important because they fall within the range of variations
presently recorded at the coring site (i.e. ±1.9 °C in August).
Nevertheless, both reconstructions suggest limited changes
in temperature, with the exception of a few cooling pulses,
possibly significant, around 2500 and 3500–4000 14C yr BP,
and prior to 8000 14C yr BP.
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Discussion and conclusions

Uncertainties and limitations

The development of any technique for the reconstruction of
past climatic parameters implies a number of approximations
and assumptions. The main one is that the recent assemblages
recovered in surface sediment samples are contemporaneous
with the reference hydrographic data, which are averaged
over a few tens of years. Another assumption is that the
microfossil assemblages result from vertical fluxes from surface
waters to the sea floor, and thus are representative of local
sea-surface conditions above the coring site, with limited
impact of lateral transport through intermediate or deep
currents. Although the mechanisms of biogenic particle fluxes
through the water column could be better documented,
marine snow and fecal pellets in the area of plankton
production no doubt contribute to rapid settling of micro-
organism remains, which thus form microfossil assemblages
with distribution patterns closely related with sea-surface
conditions on a regional scale. The technique we have
developed using dinocyst assemblages of the northern North
Atlantic Ocean and circum-Arctic seas bears a few additional
particularities.

1 Several new morphotypes are apparently characteristic of
Arctic seas. Although it is uncertain whether they are
ecophenotypic variants or new taxa, their ecological and
biological affinities still need documenting.

2 The rarity of hydrographic measurements in the Arctic
domain, and the lack of consistent oceanographic data
on a hemispheric scale constitute a real problem. We
hope such data will be available in the near future, and
will contribute to the improvement of the accuracy of the
proposed technique of reconstruction.

3 In Arctic environments that are marked by large freshwater
discharges such as the Laptev Sea (e.g. Kunz-Pirrung, this
issue), the upper water masses may be characterised by a
very shallow halocline or pycnocline (<20 m). Although we
are using the surface layer (0 m) to establish relationships
with dinocyst assemblages, we cannot demonstrate that
original dinoflagellate populations are indeed living above
the pycnocline in such nearshore environments. This could
be a source of error, which could partly explain the limited
accuracy of salinity reconstructions in the low-salinity
domain. We have tried to raise a data base of hydrographic
conditions within the water column in order to address this
question. However, here again the scarcity of data prevents
any reasonable statistical treatment.

4 It is unquestionable on empirical grounds that dinocyst
assemblages are related to the distribution of temperature,
salinity and sea-ice cover in surface waters. However,
the dinocyst assemblages also are dependent upon other
parameters as shown by principal component analyses.
These parameters may be linked to nutrient distribution or to
the trophic structure of planktonic populations (e.g. Devillers
and de Vernal, 2000). For example, in Arctic environments,
the distribution of dinocyst assemblages, and particularly
the proportion of Gonyaulacales versus Peridiniales show
close relationships with the distribution of polynyas (e.g.
Hamel, 2001).

The choice of a conservative approach

Despite the above-mentioned uncertainties or limitations it
has been possible to develop a reasonably accurate technique
for the reconstruction of sea-surface conditions based on the
artificial neural network technique (Peyron and de Vernal,
this issue) and on the basis of the best-analogue method,
as presented here. The approach described in the present
paper is rather conservative. It relies on interpolation and
so cannot yield reconstructions outside the range of modern
hydrographic conditions. Moreover, by using threshold values
to identify non-analogue situations, we avoid speculative
reconstruction when assemblages reveal different situations
to those represented by the modern environment. Of course,
such an approach requires a large reference data base. As
the n = 371 and n = 677 data bases yield consistent results
for subarctic seas adjacent to the northwest and northeast
North Atlantic, we may assume that they are both adequate
for reconstructions in the subpolar domain. Moreover, the
n = 677 covers a geographical and hydrographic domain wide
enough to permit reconstruction of past sea-surface conditions
in circum-Arctic regions.
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