Optics of Isotropic Materials

Chapter 4 of Nesse

ERSC 2P22 - Brock University Greg Finr

Isotropic Minerals

- Velocity of light is the _____ in all directions
- Chemical bonds holding the material together are the _____ in all directions
- Light traveling through the isotropic material 'sees' the _____ electronic configuration, irregardless of direction

ERSC 2P22 - Brock University Greg Finn

Isotropic Minerals

- Isometric (cubic) system
- 23 described in Nesse
- Examine:
 - Halite NaCI
 - Sylvite ксі
 - Fluorite CaF₂
 - $-\operatorname{Garnet} (\operatorname{Mg},\operatorname{Fe}^{2+},\operatorname{Ca},\operatorname{Mn})_3(\operatorname{Al},\operatorname{Fe}^{3+},\operatorname{Cr})_2(\operatorname{SiO}_4)_3$
 - Periclase MgO
 - Analcime Na(AI,Si₂)O₆•H₂O
 - Volcanic Glass

ERSC 2P22 – Brock University Greg F

Isometric Minerals

- If an isometric mineral is deformed or strained, then the chemical bonds holding the mineral together will be effected – some will be stretched, other compressed
- Result is that the mineral may appear anisotropic

ERSC 2P22 - Brock University Greg Finn

Indicatrix

- To examine how light travels through a mineral, an indicatrix is used
- INIDICATRIX -
- (A figment our our imagination, does not actually exist)

ERSC 2P22 – Brock University Greg Fit

Isotropic Indicatrix

- Indicatrix not needed to tell the index of refraction is the same in all directions in a isotropic mineral
- Indicatrix is introduced to prepare for its application with anisotropic minerals

ERSC 2P22 - Brock University Greg Finn

Isotropic vs Anisotropic

- Distinguished easily under the microscope, by crossing the polars
 - Isotropic minerals will appear _____ and stay _____ as the stage is rotated
 - Anisotropic minerals will allow _____ to pass, and thus will be _____ other than black

ERSC 2P22 - Brock University Greg Finn

Isotropic Minerals

- Why are isotropic minerals dark?
 - _____ the polarization direction of light
 - Light passes through the mineral and is ____
 by the upper polar
- Why do anisotropic minerals appear light?
 - _____ the polarization of light
 - Light ray is _____ as it passes through the mineral, some component passes the upper polar
 - Exhibit '_____' every 90° of rotation

ERSC 2P22 – Brock University Greg Fin