Jeff Stuart

Associate Professor, Biological Sciences

Office: Mackenzie Chown F 224
905 688 5550 x4814

My research in cell physiology focuses on mitochondrial biology in the context of healthy, aging, and disease. I am particularly interested in developing new tools and approaches to observe, manipulate, and measure mitochondria in living cells. Some of these are accessible on my Github site: Recent developments include MiNA and Hypoxio.


Physiological Cell Culture

To learn about basic mitochondrial and cellular biology, understand mechanisms of disease, and develop drugs, cell culture is indispensable. However, it is critical to maintain conditions similar to those cell experience in vivo. Recently, we have focused on understanding how standard cell culture approaches, which fail to replicate in vivo conditions, affect various cellular functions. We are interested in developing better methods for maintaining cellular models in culture.

Mitochondrial Network Analysis (MiNA)

Mitochondria exist in a dynamic balance of fusion/fission and biogenesis/mitophagy that determine the size and morphology of the ‘mitochondrial network’. Many of the mitochondrial phenomena we investigate exert effects on these processes and thus manifest as changes in mitochondrial network morphology. These morphological changes affect cell physiology and are therefore important to measure and understand. To facilitate this we developed the Mitochondrial Network Analysis (MiNA) toolset as a simple set of macros making use of existing ImageJ plug-ins that allows a semi-automated analysis of mitochondrial networks in cultured mammalian cells. Use the Github link above to access this and other tools.


Stuart, J.A. and Robb, E.L. Bioactive Polyphenols from Wine Grapes.  Springer Press, New Jeresey. 2013.  77 pp.

Stuart, J.A., Editor, Mitochondrial DNA: Methods and Protocols, 2nd edition. Volume 197 In: Methods in Molecular Biology, Human Press, Totowa, New Jersey. 2009.

Book Chapters

Stuart JA, Moradi F. Resveratrol effects on skeletal muscle. In: Mitochondrial Protection for Health and Aging. Ed Marco de Oliveira. Elsevier Press, 2021.

Bagshaw ORM, Balardo CJ, Bland NA, Pardiwalla N, Samuel IAJ, Zoso SLS, Stuart JA. Mitochondrial dynamics in health and disease. In: Mitochondrial Protection for Health and Aging. Ed Marco de Oliveira. Elsevier Press, 2021.

Bagshaw ORM, Atkinson J, Fajardo VA, Leblanc PJ, Stuart JA. Mitochondrial-targeted therapeutic approaches for manipulating cardiolipin. In: Clinical Bioenergetics, Ed. Sergej Ostojic, Elsevier Press, 2020. 15pp. In press.

Valente AJF, Fonseca J, Moradi, F, Foran G, Necakov A, Stuart JA. Measuring mitochondrial network morphology in mitochondrial disease. In Mitochondria in Health and Sickness. Ed. Urbani A, Babu M. Springer Press, 2019. 18pp.

Page, M.M. and Stuart, J.A. In vitro measurement of mitochondrial DNA base excision repair enzyme activities. In: Mitochondrial DNA: Methods and Protocols, 2nd edition. Methods in Molecular Biology Series, J.M. Walker, Human Press, Totowa, New Jersey. Published online June 2009.

Recent Journal Articles

Bagshaw ORM, Moradi F, Moffatt CS, Hettwer HA, Liang P, Goldman J, Drelich JW, Stuart JA, 2021. Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. Biomaterials and Biosystems. Vol. 4

Moradi F, Moffatt C, Stuart JA, 2021. The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks. Biomolecules.

Moradi F, Fiocchetti M, Marino M, Moffatt C, Stuart JA, 2021. Media composition and O2 levels determine effects of 17β-Estradiol and selective estrogen receptor modulators on mitochondrial bioenergetics and cellular reactive oxygen species. American Journal of Physiology – Cell Physiology. 321(1):C72-C81.

Fiocchetti M, Cracco P, Montalesi E, Solar Fernandez V, Stuart JA, Marino M, 2021. Neuroglobin and mitochondria: the impact on neurodegenerative diseases. Archives of Biochemistry and Biophysics. 701:108823. doi: 10.1016/

Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, Atallah DS, Hachem R, Ott-Peron N, Stuart JA, 2021. Vertebrate cell culture as an experimental approach – limitations and solutions. Comparative Biochemistry and Physiology B. 254:110570. doi: 10.1016/j.cbpb.2021.110570.

Guillory R, Kolesar TM, Oliver A, Morath LM, Sikora-Jasinska M, Stuart JA, Bocks M, Drelich J, Goldman J, 2020. Suppression of vascular intimal hyperplasia by degradation byproducts from zinc-based implants. Materials Science & Engineering C. 111, 110826. doi: 10.1016/j.msec.2020.110826.

Moradi F, Copeland E, Baranowski RW, Scholey A, Stuart JA, Fajardo VA, 2020.
Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. International Journal of Molecular Sciences 21, 1016; doi:10.3390/ijms21031016.
I supervised and financially supported Fereshteh Moradi’s work with Val Fajardo.

Stuart JA, Selim S, and McGowan S, 2019. A limited metabolomics analysis validates sonication-assisted extraction of Ice Wine grape pomace polyphenols and demonstrates their seasonal variation. Journal of Food Measurement and Characterization. 1-6.

Kurgan N, Whitley KC, Maddalena LA, Moradi F, Stoikos J, Hamstra SI, Rubie E, Kumar M, Roy BD, Woodgett JR, Stuart JA, Fajardo VA (2019) A low-therapeutic dose of lithium inhibits GSK3 and enhances myoblast fusion in C2C12 cells. Cells, 8(11), 1340;

Fajardo VA, Watson CJF, Bott KN, Moradi F, Maddalena LA, Turner BC, Peters SJ, LeBlanc PJ, MacNeil AJ, Stuart JA, Tupling AR, 2019. Neurogranin is expressed in mammalian skeletal muscle and inhibits calcineurin signalling and myoblast fusion. Am J Physiol Cell Physiol. 317(5):C1025-C1033. doi: 10.1152/ajpcell.00345.2018.

Bagshaw ORM, De Lange M, Renda S, Valente AJF, Stuart JA, 2019. Hypoxio: a simple solution to preventing pericellular hypoxia in cell monolayers growing at physiological oxygen levels. Cytotechnology. 71(4): 873-879.

Stuart JA, Aibueku O, Bagshaw ORM, Moradi F, 2019. Hypoxia Inducible Factors as Mediators of Reactive Oxygen/Nitrogen Species Homeostasis in Physiological Normoxia. Medical Hypotheses. 129: 109249.

Fonseca J, Moradi F, Maddalena LA, Ferreira-Tollstadius B, Selim S, Stuart JA, 2019. Resveratrol integrates metabolic and growth effects in PC3 prostate cancer cells – involvement of prolyl hydroxylase and hypoxia inducible factor-1. Oncol Lett, 17(1): 697–705.

Marquardt D, Ghelfi M, Maddalena LA, Stuart JA, Atkinson J, Harroun TA, 2019. Vitamin E-inspired Multi-scale imaging agent. Bioorganic & Medicinal Chemistry Letters, 29(1):107-114.

Fonseca J, Moradi F, Valente AJF, Stuart JA, 2018. Oxygen and glucose levels in cell culture media determine resveratrol’s effects on growth, hydrogen peroxide production, and mitochondrial dynamics. Antioxidants, 7(11): 157. doi:10.3390/antiox7110157.

Stuart JA, Fonseca J, Moradi F, Cunningham C, Seliman B, Worsfold CR, Dolan S, Abando J, Maddalena LA, 2018. How supra-physiological oxygen levels in standard cell culture affect oxygen-consuming reactions. Oxid Med Cell Longev, Article ID 8238459.

Mazinani SA, Stuart JA, Yan H, 2018. Microwave-assisted delivery of an anticancer drug to cancer cells. RSC Advances 8: 31465-31470.

Said SA, Isedowo R, Guerin C, Nar NN, Lillie L, Bukovac S, Simone JJ, Green MR, McCormick CM, Stuart JA, 2018. Effects of long-term dietary administration of estrogen receptor-beta agonist diarylpropionitrile on ovariectomized female ICR(CD-1) mice. GeroScience 40(4):393-403.

Maddalena, L.A., Selim, S.S., Fonseca, J., Messner, H., McGowan, S., Stuart, J.A., 2017.  Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.  Biochem Biophys Res Commun.  493:246-251.

Mazinani, S., Moradi, F., Stuart, J.A., Yan, H., 2017 Microwave irradiation of PC3 cells at constant culture temperature alters the incorporation of BODIPY into cells and reduction of MTT.  Chem Biochem.  2(26):7983-7986.

Valente, A.J.F., Maddalena, L.A., Robb, E.L., Moradi, F., Stuart, J.A., 2017.  A Simple ImageJ Macro Tool for Analyzing Mitochondrial Network Morphology in Mammalian Cell Culture.  Acta Histochem, 119(3):315-326.

Robb, E.L., Moradi, F., Maddalena, L.A., Valente, A., Fonseca, J., Stuart, J.A., 2017 Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2.  Biochem Biophys Res Commun, 485(2):249-254.

Maddalena, L.A, Ghelfi, M., Atkinson, J., Stuart, J.A., 2017. The mitochondria-targeted imidazole substituted oleic acid ‘TPP-IOA’ affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism. Biochim Biophys Acta. 1858:73-85.

Yalagala, R.S., Mazinani, S.A., Maddalena, L.A., Stuart, J.A., Yan, F., Yan, H. 2016. Microwave-assisted syntheses of BODIPY-sugar conjugates through click chemistry and conjugate assembly into liposomes. Carbohydr Res. 2016 Apr 7;424:15-20.

Stuart, J.A., Maddalena, L.A., Merilovich, M., and Robb, E.L., 2014.  A Midlife Crisis for the Mitochondrial Free Radical Theory of Aging.  Healthspan and Longevity. 3(1):4.

Robb, E.L, Christoff, C.A., Maddalena, L.A., and Stuart, J.A., 2014.  Mitochondrial reactive oxygen species in animal cells:  relevance to aging and normal physiology. Can. J. Zool. 92(7): 603-613.

Page, M.M., Sinclair, A., Robb, E.L., Stuart, J.A., Withers, D.J., Selman, C., 2014 Fibroblasts derived from long-lived insulin receptor substrate 1 null mice are not resistant to multiple forms of stress.  Aging Cell 13(5), 962-964.

Robb, E.L. and Stuart, J.A., 2014. The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase. Phytochemistry98,164-173.

Robb, E.L. and Stuart, J.A., 2014.  Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression.  Phytother. Res28,120-131.