

The Cellular and Molecular Biology of Longevity

Identification of pro-longevity traits
 Cellular stress resistance
 Tumour suppression

 Manipulation of pro-longevity genes using small molecule effectors

Anti-cancer activities

Anti-cell death activities

The Cellular and Molecular Biology of Longevity

Identification of pro-longevity traits
 Cellular stress resistance
 Tumour suppression

 Manipulation of pro-longevity genes using small molecule effectors

Anti-cancer activities

Anti-cell death activities

Decoding Red Wine

Ellen Robb PhD candidate

.OH

Phytoalexins

Plasmopara viticola (Downy Mildew) on Vitis vinifera leaf

Vitis vinifera responds to fungal infection by producing 'phytoalexins': resveratrol, pterostilbene, piceid, and others

Phytoalexins inhibit growth of parasitic fungi

Phytoalexins also inhibit growth of human cells

Stimulation of *Vitis vinifera* Phytoalexin Production by Fungal Infection

	0		2 dpi		6 dpi	
	Average	SD	Average	SD	Average	SD
Trans-piceid	ND	ND	ND	ND	2.7	0.4
Trans-resveratrol	ND	ND	ND	ND	5.7	3.6
Pallidol (ampelopsin H)	ND	ND	ND	ND	30.22	16.04
Ampelopsin D + quadrangularin A (1:1)	ND	ND	ND	ND	8.0	4.2
Isohopeaphenol	ND	ND	ND	ND	147.0	70.6
Ampelopsin H + vaticanol-C like isomer (ampelopsin H)	ND	ND	ND	ND	35.80	19.4
(+)-E-ε-viniferin	ND	ND	ND	ND	13.1	6.9
Z + E-miyabenol C (Z -miyabenol C)	ND	ND	ND	ND	10.5	2.9
$Z + E - \omega$ -viniferin ($E - \omega$ -viniferin)	ND	ND	ND	ND	9.5	2.7
α-viniferin	ND	ND	ND	ND	15.5	7.0
E-cis-miyabenol C	ND	ND	ND	ND	16.9	20.4
Trans-pterostilbene (trans-resveratrol)	ND	ND	ND	ND	6.0	4.0

ND, not detected.

Vitis vinifera Phytoalexins can be Isolated, Identified, and Characterized

J Agric Food Chem 2011, 59, 5364-5375

Structures of Viniferan Phytoalexins

Vinifera phytoalexins include resveratrol, analogues of resveratrol, and a number of resveratrol oligomers

Figure 4. Structures of stilbenoid dimers in grapevine leaves (Z- ε -viniferin (1), E- ε -viniferin (2), E- ω -viniferin (3), Z- ω -viniferin (4), pallidol (6), E-ampelopsin D (7), E-quadrangularin A (8)) and of a condensation product between (+)-catechin and *trans*-caffeic acid (5).

J Agric Food Chem 2011, 59, 5364-5375

Resveratrol is Famous

Resveratrol: Mechanisms of Action in Mammalian Cells

Resveratrol induces MnSOD expression in human cells

Resveratrol induces manganese superoxide dismutase expression in a wide variety of human cell types

Human lung cells

Human brain cells

Resveratrol provided as a diet supplement increases MnSOD expression in brain

What is MnSOD?

MnSOD: a mitochondrial superoxide dismutase

MnSOD is a Cell Cycle Regulator

Low MnSOD levels/activities → High proliferative growth rates

High MnSOD levels/activities → Low proliferative growth rates

Resveratrol Effects on MnSOD and Growth in Human Cells

Resveratrol Effects on MnSOD and Growth in Human Cells

Resveratrol, MnSOD and proliferative growth

Induction of MnSOD is required for resveratrol to slow growth

Robb & Stuart FRBM 2011

Resveratrol is a Phytoestrogen

Similar molecular structures of estrogens and resveratrol

17B-Estradiol

trans-Resveratrol

Phytoalexins as Phytoestrogens

Resveratrol and related molecules are predicted to bind to ERB

Estrogen receptor B (ERB) complexed to a related phytoestrogen (genistein)

Estrogen Receptor B (ERB)

- A more recently discovered estrogen receptor (compared to $ER\alpha$)
- Widely expressed (brain, skin, GI tract, many cancers)
- Associated with anti-proliferative effects

ERB and MnSOD

ERB antagonist ICI182780 prevents the resveratrol-mediated induction of MnSOD

ERB and MnSOD

ERB-specific agonist DPN (but not ERα-specific agonist PPT) similarly induces MnSOD expression

Robb & Stuart FRBM 2011

Other Vinifera Phytoalexins are Structurally Similar to Resveratrol....Do They Have Similar Effects?

Resveratrol

Piceid

Pterostilbene

Other Vinifera Phytoalexins are Structurally Similar to Resveratrol....Do They Have Similar Effects?

Robb and Stuart, 2012 (submitted)

Other Vinifera Phytoalexins are Structurally Similar to Resveratrol....Do They Have Similar Effects?

Other Vinifera Phytoalexins are Structurally Similar to Resveratrol....Do They Have Similar Effects?

Yes, the structurally related *Vitis vinifera* molecules piceid and pterostilbene have similar effects to resveratrol on MnSOD expression and replicative growth

Effects of Pterostilbene on Proliferative Growth are Also Dependent Upon MnSOD Induction

Effects of Pterostilbene on Proliferative Growth are Also Dependent Upon MnSOD Induction

Conclusions & Applications

Resveratrol, piceid and pterostilbene inhibit proliferative growth of human cells via the induction of MnSOD mediated by ERB

Conclusions & Applications

Resveratrol, piceid and pterostilbene inhibit proliferative growth of human cells via the induction of MnSOD mediated by ERB

Can this be applied to cancer cell growth?

MnSOD is Transcriptionally Repressed in (many) Cancers

Molec. Aspects Med. Vol. 14, pp. 253-258, 1993

MnSOD is Transcriptionally Repressed in <u>Prostate</u> Cancer Cells

Transgenic Rescue of MnSOD Expression Slows Prostate Cancer Growth

Slowed growth of transplanted tumours by MnSOD

Prostate Cancer Cells Express High Levels of ERB

	VCaP	PC3	DU145
ERα	100 ± 9	110 ± 19	UD
ERβ	100 ± 14	$206 \pm 18^{\circ}$	$151 \pm 22^{\circ}, ^{\S}$
Ratio ERα/ERβ	1.00	0.48	0

Many cancers (including prostate) have reduced MnSOD expression

- Many cancers (including prostate) have reduced MnSOD expression
- Transgenic rescue of MnSOD expression slows cancer cell growth

- Many cancers (including prostate) have reduced MnSOD expression
- Transgenic rescue of MnSOD expression slows cancer cell growth
- ERB stimulates MnSOD expression

- Many cancers (including prostate) have reduced MnSOD expression
- Transgenic rescue of MnSOD expression slows cancer cell growth
- ERB stimulates MnSOD expression
- Prostate cancer cells have ERB

- Many cancers (including prostate) have reduced MnSOD expression
- Transgenic rescue of MnSOD expression slows cancer cell growth
- ERB stimulates MnSOD expression
- Prostate cancer cells have ERB
- Some Vitis vinifera phytoestrogens are ERB agonists

Does phytoestrogen treatment of prostate cancer cells induce MnSOD and slow growth?

Resveratrol and Pterostilbene Similarly Inhibit Prostate Cancer Cell Growth

Effects of ERB agonists on proliferative growth

Resveratrol and Pterostilbene Similarly Stimulate MnSOD Expression in Prostate Cancer Cells

Effects of ERB agonists on MnSOD expression

At least two *Vitis vinifera* phytoalexins (resveratrol and pterostilbene) inhibit prostate cancer growth, probably via the ERB-mediated induction of MnSOD expression

Ongoing Studies with Prostate Cancer

- Investigate other cancers, e.g. colon, breast
- Investigate efficacy of other viniferins
- In vivo studies with mice

Conclusions and Prospectus

- ERB agonists stimulate a significant induction of MnSOD, a tumour suppressor enzyme that negatively regulates cell proliferative growth
- Resveratrol, pterostilbene and piceid induce an ERB-dependent increase in MnSOD expression that inhibits proliferative growth in normal and cancerous cells
- Other *Vitis vinifera* phytoalexins with similar properties, e.g. resveratrol oligomers?

Acknowledgements

MINISTRY OF RESEARCH AND INNOVATION MINISTÈRE DE LA RECHERCHE ET DE L'INNOVATION

www.ontario.ca/innovation.

Canada Foundation for Innovation Fondation canadienne pour l'innovation

