Grapevine Nutrition:

Healthy Vines = Hardy Vines

Kevin W. Ker, PhD, P.Ag.

KCMS Applied Research and Consulting Inc. and Cool Climate Oenology and Viticulture Institute (CCOVI) Brock University, St. Catharines Ontario Canada

What are my objectives?

- Use proper production so it can grow grapes each year (ENVIRONMENTALLY responsible)
- Produce marketable high quality grapes each and every year (SUSTAINABILITY over time)
- Understand and use practices that enable the vineyard to be viable (ECONOMICALLY viable)
- WE must be successful for <u>ALL THREE</u> components !

- What are the critical elements necessary for growth?
 - What influences nutrient availability ?
- What do I have right now?
 - What does a soil test tell me?
 - What does a tissue test tell me ?
- Avoiding luxury applications
- Vine Nutrition Top Ten

There is no "ONE SIZE FITS ALL" approach to vineyard nutrition

- Water and nutrients limit vine growth and productivity
- Frequency of precipitation to enable mineral elements to be taken up by roots
- Evaporation (temperature) and transpiration demands more transpiration more nutrient uptake
- Mineral element balance (competition for space on soil particles and uptake by vine roots)
- Cultivar, clone, rootstock and interactions

- Nutrient elements concentrated in top 50 cm of profile
- Soil type parent material, texture, etc
 - Soil pH
 - Organic Matter (OM) Levels
 - Vine rooting depths roots grow in nutrient rich areas but they "do not seek out" nutrients and water!
- Different minerals at different depths
- Mineral mobile or immobile
- Cultivar, clone, rootstock and interactions

Growth Rates and Vine Nutrient Levels

- Early season growth is based on stored nutrients in vine not from root uptake! (first 3 expanded leaves from reserves)
- Further growth requires nutrient AND water uptake
- Insufficient nutrients growth
- \blacktriangleright Water stress reduces growth and nutrient demand \clubsuit
- Nutrient deficiency leads to
 - Cell division (impact on berry /cluster size and shoot growth!)
 - Photosynthesis
 - Overall vine health
 - Fruit quality
 - Vine hardiness

Critical Elements for Vine Development

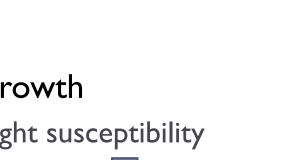
Macro Nutrients

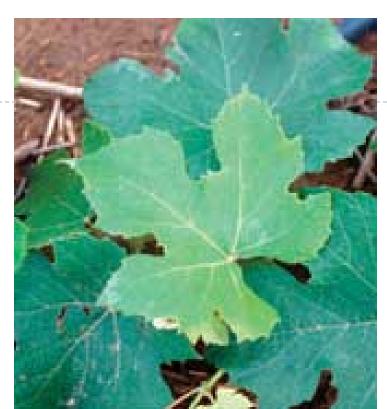
Nitrogen, Phosphorus, Potassium, Magnesium, Calcium, Sulphur

Micro Nutrients

Iron, Manganese, Boron, Copper, Zinc, Chlorine

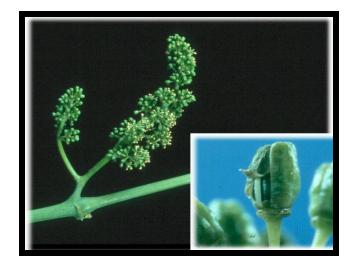
Nitrogen

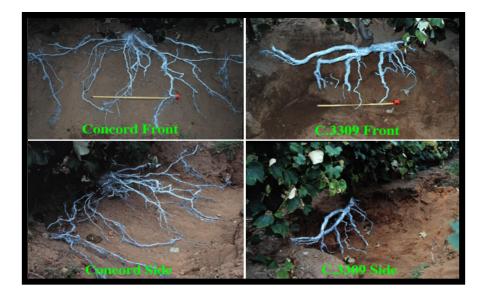


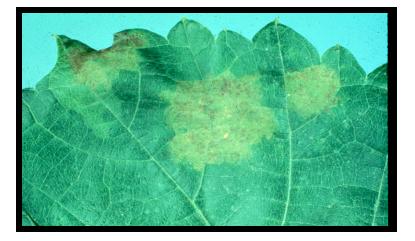


Nitrogen deficiency

- Root growth
 - Drought susceptibility
- Shoot growth
- Photosynthesis
 - Chlorophyll Carbohydrates Anthocyanins
- Premature Leaf senescence
 - Nutrient recycling

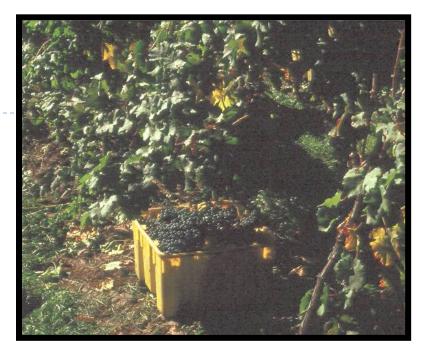






Phosphorus

Phosphorus deficiency


- Root Growth more shallow and less at depth
 - Increase drought susceptibility
- Shoot Growth
- Carbohydrates 1
- Photosynthesis_
- Mg transport I leads to Mg deficiency symptoms
- Premature Leaf Senescence
 - Nutrient recycling

Potassium

CMS

Potassium deficiency

- Root growth more lateral
- Shoot Growth
- Photosynthesis
- Sugar export
 - Ripening and overwintering reserves
- Xylem flow
- Premature Leaf Senescence
 - Nutrient recycling
- *Be aware of Cultivar/Clone Demand and Rootstock Interaction

Magnesium



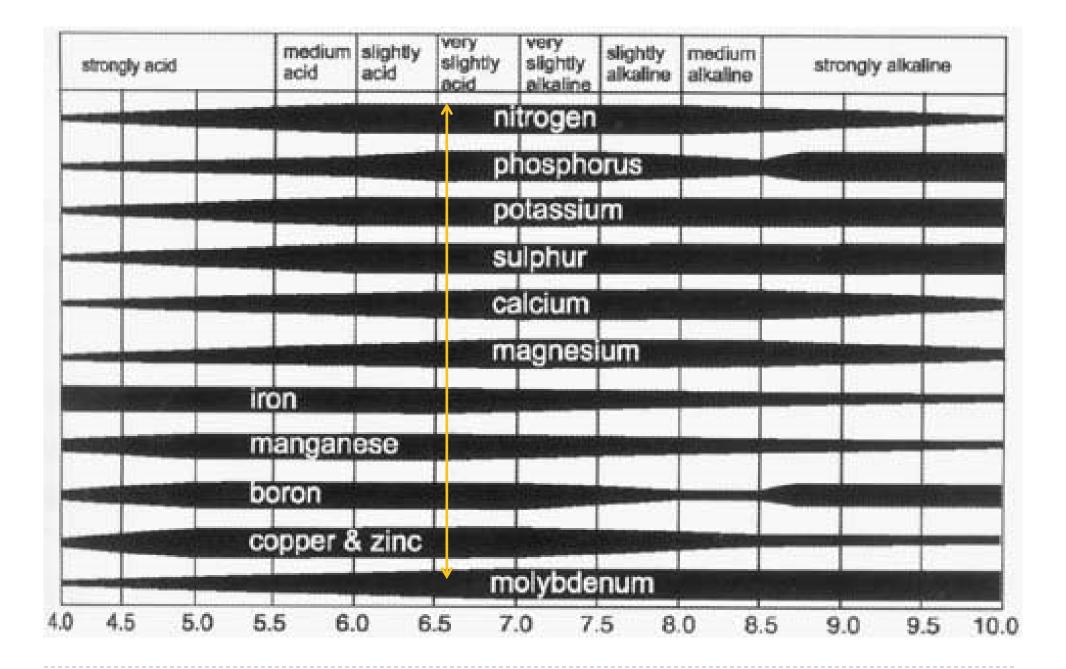
KCMS

Magnesium deficiency

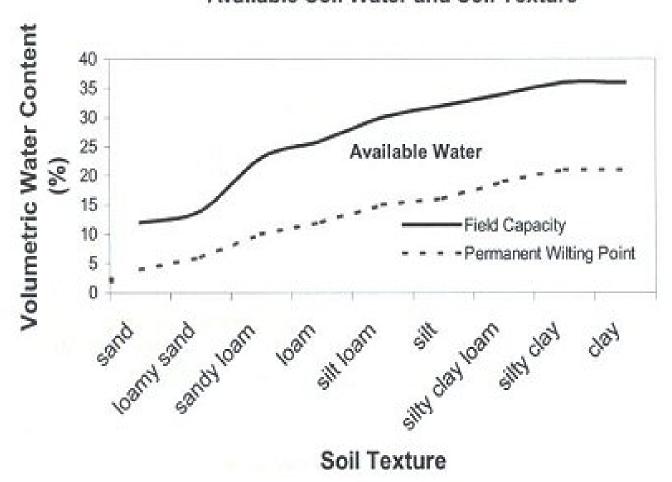
- Root growth
- Photosynthesis
 - Sugar and starch in leaves 1
 - Light sensitive leaves
 - Anthocyanins in leaves 1
- Shoot growth
- Berry development
 - Late season bunch stem necrosis
 - Shatter

Role of Micro Nutrients

Iron	Chlorophyll, shoot growth and elongation, fruit set, shatter		
Manganese	Photosynthesis, chlorophyll, enzyme activation		
Boron	Pollen germination and fruit set, shoot development, root growth		
Copper	Root growth, leaf formation, shoot elongation, crop load		
Zinc	Plant growth and seed formation, chlorophyll, bud hardiness, stem integrity		
Chlorine	Cell division, nitrogen metabolism		



How the nutrients move?


- Must consider soil nutrient holding capacity texture, CEC etc
- Impact of pH
- Soil moisture levels
- Plant growth stage and demands for mineral elements
- Mobility in the soil and in the vine

Source - http://www.fao.org/docrep/008/ae939e/ae939e03.htm

Available Soil Water and Soil Texture

http://www.gov.mb.ca/agriculture/crops/potatoes/bda04s05.html

Macronutrients				
	Mobility in Soil	Plant Available Form	Mobility in Plant	
Nitrogen	Med – High	NH_4^+, NO_3^-	High	
Phosphorus	Low	HPO4 ⁻² , H ₂ PO ₄ ⁻	High	
Potassium	Low – Med	K +	High	
Calcium	Low	Ca ⁺²	Low	
Magnesium	Low	Mg ⁺²	High	
Sulphur	Medium	SO ₄ -2	High	

Micronutrient Mobility

	<u>Mobility in</u> <u>Soil</u>	<u>Plant Available</u> <u>Form</u>	<u>Mobility in</u> <u>Plant</u>
Boron	High	$B(OH)_3, H_2BO_3^-$	Low-med
Copper	Low	Cu ⁺²	Med
Iron	Low	Fe ⁺² , Fe ⁺³	Low
Manganese	Low	Mn ⁺²	Low
Molybdenum	Low-med	MoO ₄ -2	Low-med
Zinc	Low	$Zn^{+2}, Zn(OH)_2^0$	Low
Chlorine	High	Cl	High

Why do people use fertilizers?

Habit

Wishful Thinking Sometimes it can get you into trouble

Good Salesman

Laboratory Recommendation

How should I decide what nutrients are *REALLY* needed ?

Need to think like Sherlock Holmes and Dr. Watson

- Observe the patient in the field (vine)
- Understand the patient's lifestyle (crop load, pruning, training, environment, etc)
- Check the patients diet (soil)

Physically check over the patient (tissue)

Soil and Tissue Sampling

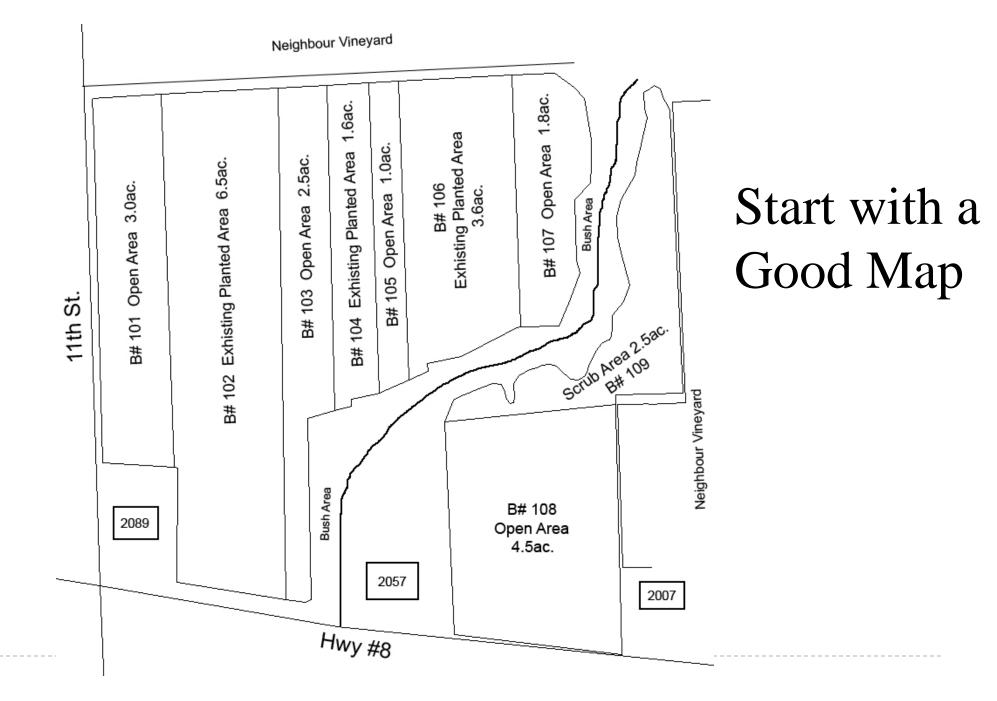
- Establish base levels of nutrients
- Diagnose problem areas
- Monitor nutrient levels
- Assist in establishing fertilizer and lime requirements

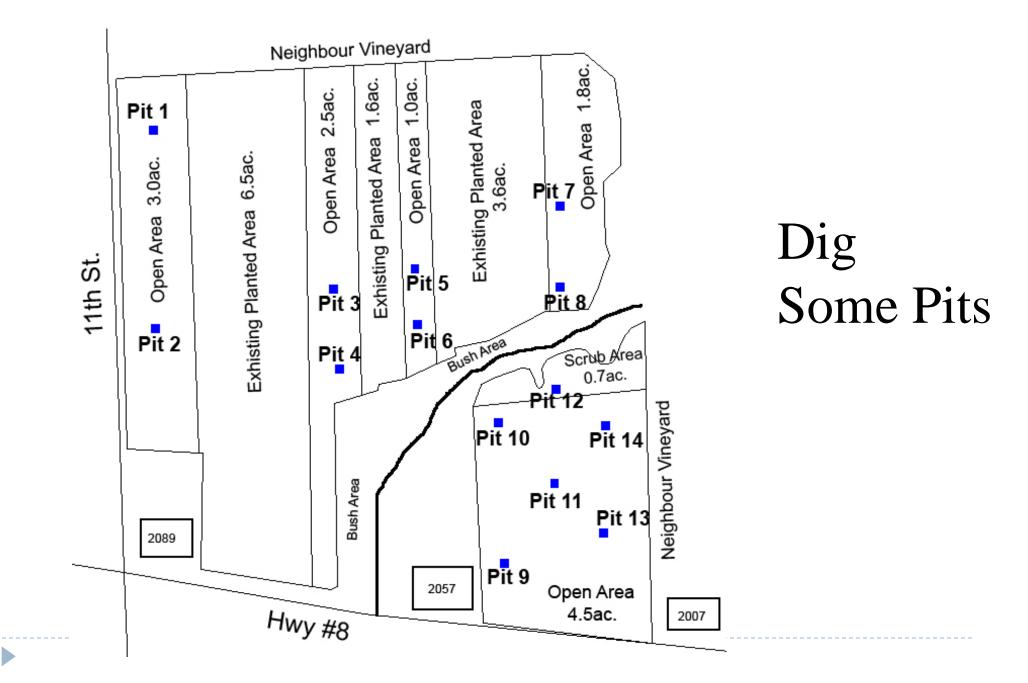
Why do people take soil and tissue samples?

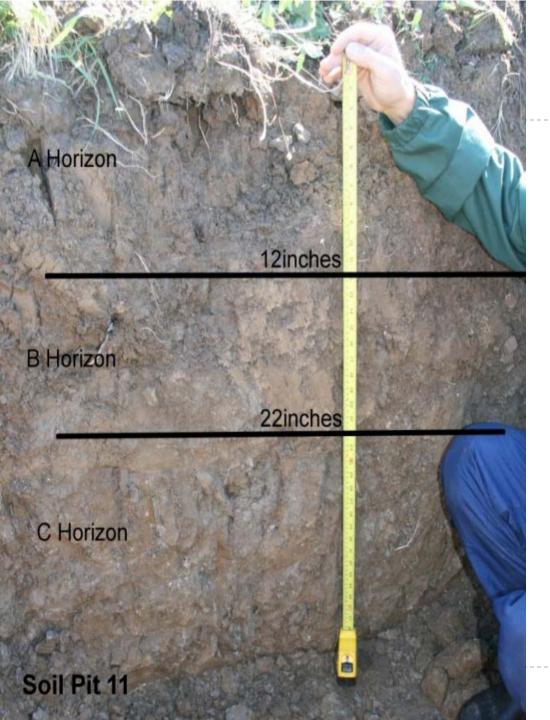
- Observations of poor vine growth or fruit quality
- Poor yields
- Want higher yields than what they are currently getting
- Correct issues <u>before</u> they become a problem (prevention versus treatment!)
- Understand need to develop personal and site specific vineyard data

What do I have available ? (Soil)

What is the vine taking up ? (Tissue)


What do I change? (Fertilization)



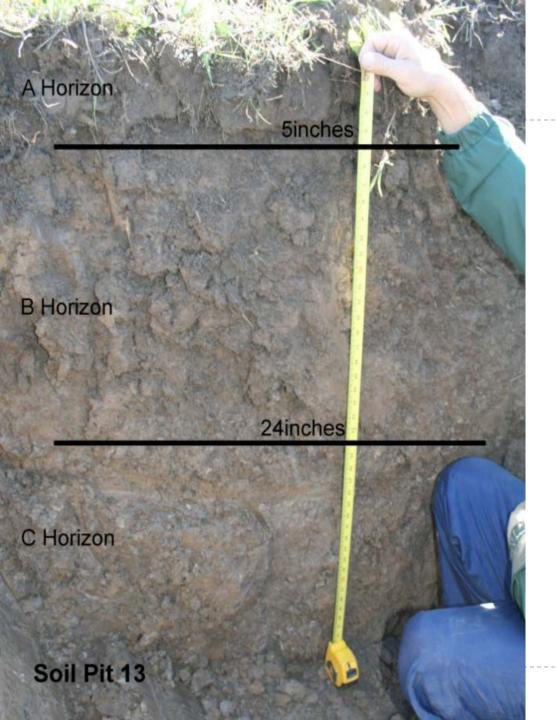


Source - http://cit.cati.csufresno.edu/images/photos/cit4.jpg

 Clover mix and barnyard grasses mainly present in this area

A Horizon

- 0-12 inches
- Highly fractured and good soil tilth
- Quite friable and appears to be in good condition
- Earthworm activity noted


B Horizon

- ► 12-22 inches
- Some roots and earthworm activity found at depth
- Appears loose with some minor silt packing
- Orange coloured (iron) streaks throughout this layer

C Horizon

- 22+ inches
- Good structure however slightly packed
- Some roots are present in this horizon
- Mainly clay with a higher degree of gravel mix that the other pits

 Clover mix and barnyard grasses mainly present in this area

A Horizon

- 0-5 inches
- Some mixing has occurred with the B horizon
- Appears to break apart easily when digging
- Iron streaking is present and slightly more wet that other areas
- Earthworm and root presence noted

B Horizon

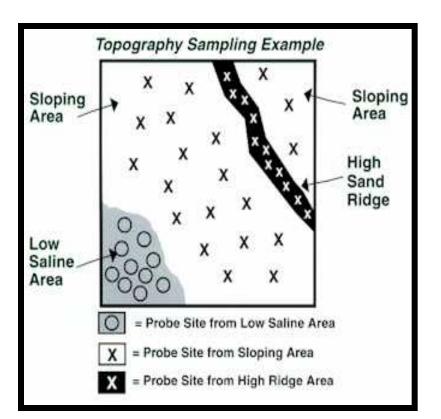
- ► 5-24 inches
- Some roots and earthworm activity found at depth
- Appears loose with some minor silt packing

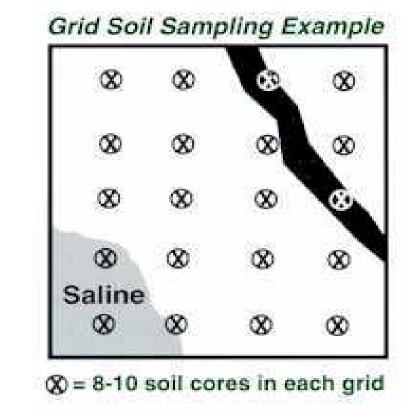
C Horizon

- 24+ inches
- No signs of any roots
- Very hard packed clay with poor natural drainage

What a Soil Analyses provides

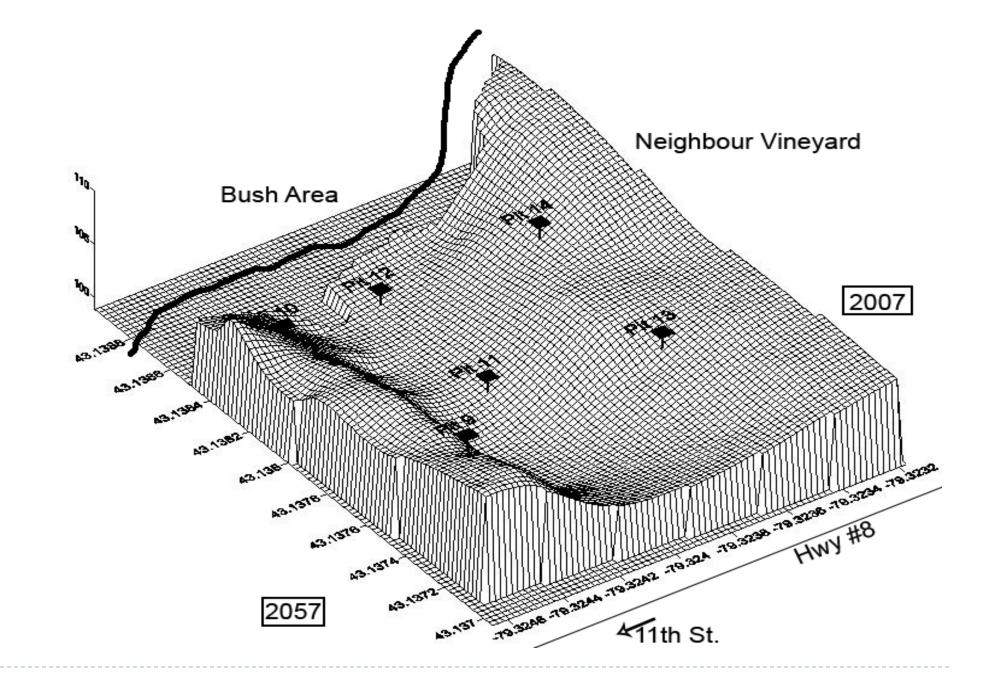
- General composition of the soil
- Soil pH at time of sampling
- Assist in planning fertilization program for the future


Soil sampling location

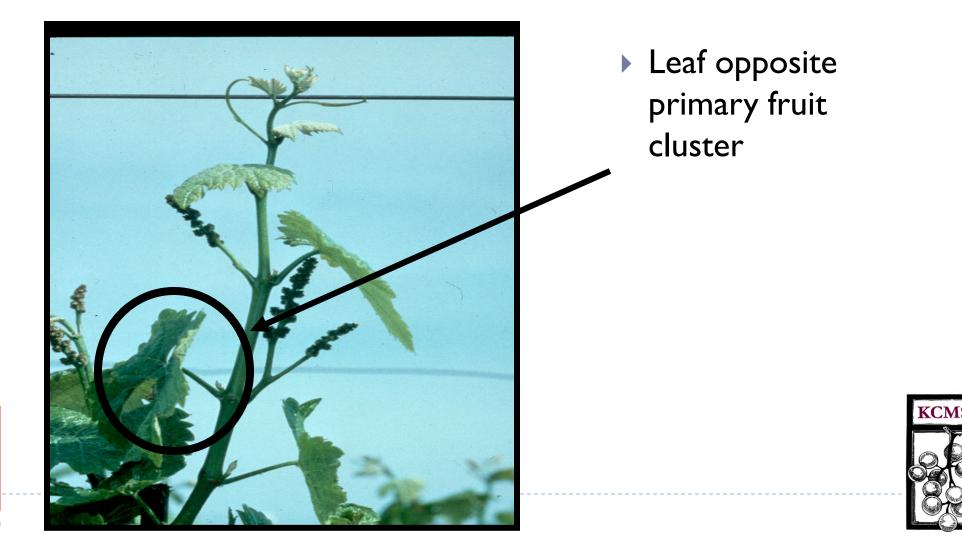


KCMS

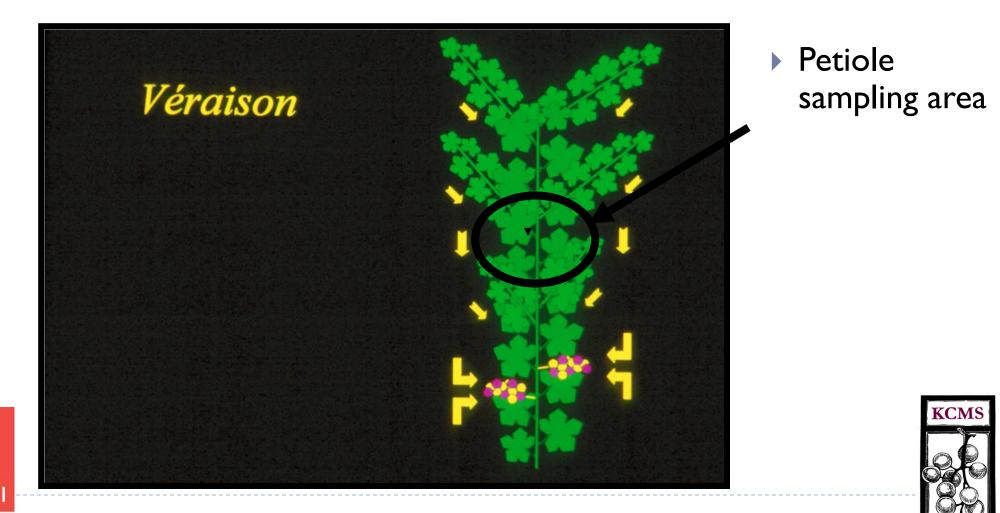
Location in Vineyard



KCMS


What a Tissue Analyses provides

- General concentration in tissue
- Results will be variable with tissue selected and time of season selected
- Nitrogen content will fluctuate over season
- Plant stresses not taken into consideration e.g. drought, excessive crop level, recent pruning, shading
- Does NOT tell you what is available in the soil



Sample Tissue Just Before Bloom

Veraison Tissue Sampling

ccov

Getting Laboratory Results

Be very aware !

Tissue results will vary

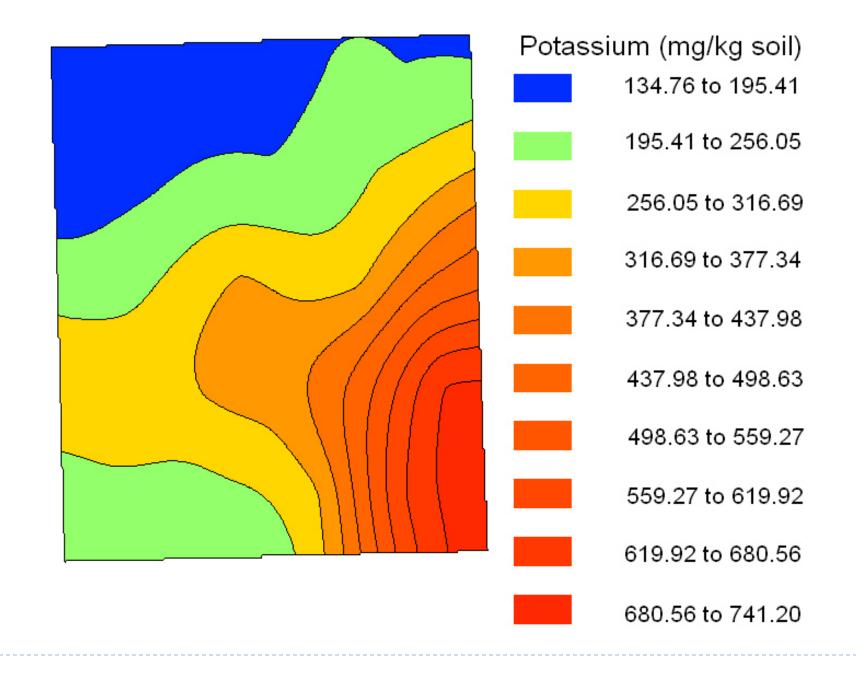
- with the age of the vines
- cultivars
- time of the year sampled
- plant part sampled
- representativeness of the sample for the area
- vine stress water, heat, crop load, competition, injury from pests
- pesticide use some have trace elements or active (e.g., Cu and S)

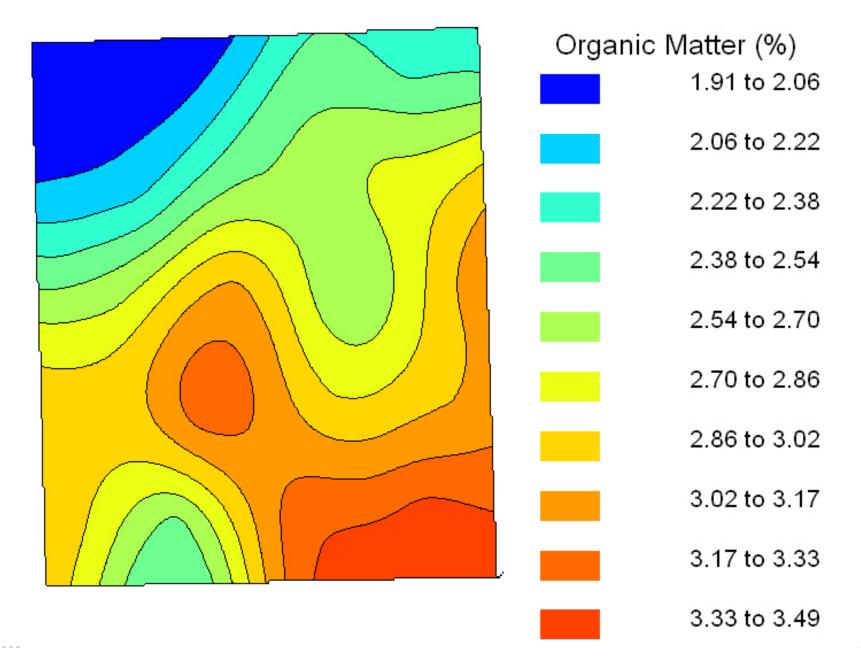
		TISSUE		TISSUE	1			TISSUE		TISSUE	
HOME		2012		2011		HOME		2012		2011	
MERLOT		ABC-3		ABC-3		CHARD		ABC-4		ABC-4	
	рН	*****		*****			рН	*****		*****	
	ΟΜ	*****		*****			ΟΜ	*****		*****	
	Ν	0.65	L	0.70	Α		Ν	0.83	Α	0.70	Α
	Са	1.98	Α	1.91	A		Са	2.22	Α	1.98	A
	Ρ	0.25	A	0.23	A		Ρ	0.15	Α	0.19	A
	K	4.61	Η	4.94	Н		K	2.91	Н	2.81	н
	Mg	0.68	A	0.50	A		Mg	0.69	Α	0.55	A
	Zn	99.37	Α	66.23	A		Zn	84.83	Α	62.32	A
	Mn	59.80	Α	113.68	A		Mn	61.90	Α	92.74	A
	Cu	5.54	Α	8.25	A		Cu	4.21	Α	4.55	Α
	Fe	34.41	Α	54.56	A		Fe	24.43	Α	31.67	Α
	B	42.94	Α	49.14	Α	 	B	36.09	Α	42.08	A

		TISSUE 2012		SOIL 2011		TISSUE 2010	
		10284606		2932907		9527206	
		KLM - 7		KLM-6		KLM- 6	
	рН	******		7.01	Α	******	
	ΟΜ	******		2.4	Α	******	
Cab. Sauv	N	0.6	L	******		0.7	A
South end	Са	2.0	A	71.2	Α	1.7	A
	Р	0.2	A	38.5	Α	0.2	A
	K	3.5	Α	3.1	L	4.3	Н
	Mg	0.6	A	14.5	Α	0.5	Α
	Zn	63	Α	2.9	н	43.8	Α
	Mn	61	A	17.5	Α	76.0	A
	Cu	4	A	6.5	Α	8.7	Α
	Fe	20	Α	27.5	Α	45.5	Α
	В	33	Α	0.71	н	42.1	Α

		TISSUE 2012		TISSUE 2012		
		10284607		10284606		
		KLM -8		KLM -7		
	рН	******		******		
	ΟΜ	*****		******		
Cab. Sauv	N	0.7	L	0.6	L	Cab. Sauv
North end	Са	1.7	A	2.0	Α	South end
	Р	0.3	A	0.2	Α	
	K	2.2	Α	3.5	н	
	Mg	0.8	A	0.6	Α	
	Zn	42	A	63	A	
	Mn	61	A	61	Α	
	Cu	2.3	A	4	Α	
	Fe	23	Α	20	A	
	B	35	Α	33	A	

Getting Laboratory Results


Be very aware of the generalizations used by labs!


Soil Results will vary

- with topography
- cultivation practices
- time of the year sampled
- prior application of OM or fertilizers
- representativeness of the sample for the area
- pesticide use some have trace elements or active (e.g., Cu and S)

D

- -

Now I have some numbers so.....?

- General assumption that 50% of nutrients taken up by the vine are assimilated in roots/leaves/shoots or lost
- Crop removal in fruit is estimated at:

Lb/t 4.5 1.5 6.75 0.5 0.4 .005 .01 .02 .002 .005 Kg/t 2.25 0.8 3.5 0.25 0.20 7 g 15 g 30 g 2.5 g 6.0 g 15 g		N	Ρ	К	Ca	Mg	Mn	Fe	Zn	Cu	В
Kg/t 2.25 0.8 3.5 0.25 0.20 7 g 15 g 30 g 2.5 g 6.0 g	Lb/t	4.5	1.5	6.75	0.5	0.4	.005	.01	.02	.002	.005
	Kg/t	2.25	0.8	3.5	0.25	0.20	7 g	15 g	30 g	2.5 g	6.0 g

Now I have some numbers so.....?

 Must remember that results must be interpreted using local data and experience

Minor Element Tissue Test Values

Elemer	nt Ontario	NE USA	Australia	Oregon	
(ppm)	(Cline)				
Boron	20-60	25-50	30-100	25-50	
Iron	15-100	30-100	NA	31-100	
Mangar	nese 20-200	100-1500	25-200	61-650	
Copper	NA	5-15	10-300	6-20	
	15-100	30-60	35-60	41-100	K
Alumin	um NA	NA	NA	NA	-

Element	Ontario	NE USA	Australia	Oregon
	(Cline)			
Nitrogen	0.7-1.3 %	0.8-1.2 %	2.2-4.0 %	0.6-1.5 %
Phosphorus	.1540 %	.1430 %	.1530 %	.1625 %
Potassium	0.8 - 2.5%	1.2-2.0 %	.8 –1.6 %	0.5-1.5%
Calcium	1.0-3.0 %	1.2-2.0%	1.8-3.2 %	2.0-4.0%
Magnesium	0.5-1.5 %	.3575 %	0.3-0.6 %	0.2-0.4 %

Major Element Soil Test Values

<u>Element</u>	<u>Ontario</u>	NE USA	<u>Australia</u>	Oregon
рН	6.5 – 7.2	6.0 - 7.0	6.0 – 7.5	6.5 – 7.4
Organic	2.0 - 3.5%	3 – 5 %	2 - 3 %	2.5 %
Matter				
Nitrogen	NA	NA	NA	NA
Phosphorus	20 ppm	20-50 ppm	30-80 ppm	20-100 ppm
Potassium	120-150	75 – 100	100 - 250	150
Calcium	1000- 5000	500-2000	1000 - 2500	1000-2500
Magnesium	100 -250	100- 250	NA	60 - 180

Element	<u>Ontario</u>	NE USA	Australia	Oregon
Zinc	1 ppm	2 ppm	0.8 –2 ppm	1 ppm
Manganese	NA	20 ppm	4 ppm	1.5 ppm
Copper	NA	0.5 ppm	0.3 ppm	0.6 ppm
Iron	NA	20 ppm	20 ppm	NA
Boron	0.5 ppm	0.3-2.0 ppm	0.5 ppm	0.5 ppm

Now I have some numbers so.....?

Must remember that the elements all work in concert with one another – No single element performs alone!

Questions ?

- Make a good site map for you and others to follow
- Collect data over time for YOUR site no two locations are the same
- 3. Compare your results with ONSITE observations of vine performance

- 4. Sample from GOOD and POOR areas on same site to develop your own target values for results
- 5. Be consistent create a 5 year plan of sampling- same time of year and general locations
- 6. Before applying any fertilizers be sure it to meet a REAL need **not a guess** of need

- 7. Nutrient applications are not cheap and costs skyrocket if you blend in micronutrients (are they really needed?)
- 8. Foliar fertilizers good when symptoms visible but a luxury expense when not needed
- 9. All purpose foliar products often have you paying for what is not needed

10. Walk your vineyard regularly –

Using your own experience and knowledge along with your senses (sight, touch, taste, smell) can tell you a lot more than paper results!

Additional Information Sources

- Wine Grape Production Guide for Eastern North America (2008) – T.K. Wolf , Editor
- Oregon Viticulture (2003) E.W. Hellman, Editor
- Grapevine Nutrition into Practice (2005) CCRV Australia
- Mineral Nutrition of Higher Plants 2Nd Ed. (2003). - H. Marschner
- The Science of Grapevines: Anatomy and Physiology (2010). -M. Keller WSU

Thanks for your time!