

Contents

- 1. Press fractioning on a commercial scale project summary
- 2. Preliminary press fraction results
- 3. Summary of the preliminary study of the bentonite/ protein/foaming sparkling wine trial
- 4. Gushing: Reasons & remedies
- 5. Gushing project summary
- 6. Acknowledgements

Background to studies

Applied scientific research studies that benefit Ontario sparkling winemakers

- What is applied research?
- ✓ It is a discipline of science that uses existing scientific knowledge to devise solutions to specific problems.
- ✓ Applied scientific research is valuable and essential in our competitive global wine environment.
- Dedicated CCOVI research trials specific to Ontario sparkling wines
- Requested by Ontario sparkling winemakers
- Fizz Club: 38 sparkling wine producers attended in 2014 (increase in 2015)

Sparkling wine trials

Continuation and expansion of trials i.e. *dosage* trial funded by NSERC Engage grant in collaboration with Trius at Hillebrand winery.

Press fractioning options

Press fractions

Champagne

- Cuvee = 20.5hL
- Tailles = 5hL (1st taille -3hL + 2nd taille 2hL)
- 3rd taille 1-2hL distillation

Press fraction volume and composition depends on press pressure of each cycle, type of press, length of each press cycle, grape variety, wines style and vintage

Press fractions

Press fractions CLONE 115 (Dijon clone)

Cool Climate Oenology &

Viticulture Institute

Experimental winemaking method

- Pinot noir Clone 115
- Whole bunch pressed
- Wine taken from tap before hitting the tray middle of each cycle
- No enzymes added
- > 30 ppm SO2
- Winemaking in triplicate no MLF
- Chemical analysis of juice & wine pH, TA (g/L), Brix, fre & total SO2, ethanol, Nitrogen, turbidity, glucose, fructose, residual sugar, malic acid, heat stability, tartrate stability, total phenolics, conductivity & potassium.
- EC118 both fermentations
- Tirage same for all fractions (calculated on residual sugar & target of 24 g/L for 2nd fermentation

Press fraction juice and wine composition

(Analysis at every stage of winemaking but pre-fermentation and pre-bottling data presented today)

Table 1. Press fraction juice analysis

Press Fraction	Brix	TA (g/L)	рН	Total YAN (mg/L)	Glucose (g/L)	Fructose (g/L)	Malic acid (g/L)	Turbidity (NTU)	Acetic acid (g/L)
PF1	18.5	8.3	3.12	153	82	78	3.9	267	<0.01
PF2	18	7.5	3.19	154	83	77	3.6	297	<0.01
PF3	18	6.3	3.39	160	83	78	3.4	261	<0.01
Significance	NS	< 0.0001	< 0.0001	< 0.0001	NS	NS	< 0.0001	< 0.0001	NS

Table 2. Press fraction base wine analysis (prior to bottling)

Press fraction	Alcohol (% v/v)	TA (g/L)	рН	Total YAN (mg/L)	Glucose (g/L)	Fructose (g/L)	Residual sugar (mg/L)	Malic acid (g/L)	Turbidity (NTU)	Free SO2 (ppm)
PF1	10.6	7.7	2.9	10.3	0.02	0.10	0.12	3	0.1	19
PF2	10.6	6.8	3.1	11.6	0.02	0.10	0.12	3	1.5	23
PF3	10.7	6.0	3.4	14.5	0.02	0.21	0.23	3	10	20
Significance	. NS	< 0.0001	< 0.0001	< 0.0001	NS	< 0.0001	< 0.0001	NS	< 0.0001	< 0.0001

^{*}Turbidity decreased in other studies but increased in our wines

Press fraction primary fermentation

Press fraction primary fermentation rates at 16°C

Relevance of results to wine?

- TA (g/L) increases & pH decreases
- Phenolic concentration influence on flavour and foaming (increase during pressing)
- Higher level of residual sugar in 2nd taille due to higher fructose levels
- Turbidity increase in 2nd taille
- Foaming?
- Flavour?
- Sparkling wine quality

Press fraction trial: Next steps

- Further chemical analysis i.e. phenolic analysis
- Further statistical data analysis
- Foam analysis of the final disgorged wines before and after dosage
- Tasting with Ontario sparkling winemakers at Fizz Club

Sparkling wine project: OMAFRA-U OF G PARTNERSHIP Bentonite, protein & bubbles!

Preliminary investigation trial vintage 2014: REGIONAL SPECIFIC STUDY

Pinot noir Mariafeld

Mariafeld is a group of clones of Pinot noir. Vigorous, long & loose bunches, high disease resistance, big berries & high acidity. Planted in Germany from the beginning of the 90s.

Experimental design

- Two base juices of 200L each
 - 1. No bentonite treatment
 - 2. 1g/L Vitiben bentonite added to juice but removed prior to 1st fermentation

✓ Contribution of grape proteins to foaming

Pinot noir Mariafeld, juice after pressing, SS tank & enzyme addition (200L)

^{*} Bentonite used: Vitiben pre-fermentation and Inoclair 2 at tirage

A pyramidal winemaking design

Stage 1: 200L juice

Stage 2: Juice: 1 treated bento & 1 no bento

Stage 3: Divided into 4 fermentation reps first fermentation EC118 yeast

Stage 4: Blended into 1 x bento & 1 x no bento in juice.

Stage 5: Subdivided into 8 x treatments of bottled wines (bottle replication bento timing x 2 vs yeast type x 2)

Bentonite trial winemaking

- Whole bunch pressed at winery (Bucher press)
- Pectic enzymes added to tank & settled
- First fermentation x 2 with EC118 yeast & nutrients
- (+ bento & no bento)
- No MLF
- Cold stabilised with seeding to -4°C
- Sheet & plate filtration to 0.45
- Tirage/bottled at Fielding Estate Winery
- 2nd fermentation/Storage

Juice analysis

		Titratable			Total N	Amino N
Production stage	Treatment	Acidity (g/L)	рН	°Brix	(mg/L)	(mg/L)
Pre-bentonite	No bento	14 ±0.01	3.1 ±0.01	19 ±0.0	298 ±0.1	215 ±0.0
treatment	Bento	14 ±0.01	3.1 ±0.02	19 ±0.0	291 ±0.1	208 ±0.1
After bentonite	No bento	13 ±0.03	3.1 ±0.03	19 ±0.1	284 ±2.0	211 ±0.1
treatment	Bento	12 ±0.02	3.1 ±0.04	19 ±0.0	304 ±3.0	216 ±0.0

Primary fermentation

Base wines

Figure 1a. Base wine produced from bentonite treated juice prior to bottling

Figure 1b. Base wine produced from untreated juice prior to bottling

Protein concentration(µg/mL) by the Bradford Assay during sparkling winemaking

2nd

ferment

only EC118

bento +

Brock

veast

bento +

EC1118

2nd ferment

EC118 yeast

ferment only

EC118

1st ferment

only Brock

veast

1st & 2nd

Brock yeast

ferment

2nd ferment

only Brock

veast

Base wine analysis before bottling

Table 1. Wine analysis prior to subdividing into 2nd fermentation treatments

Treatment	Vol (L)	рН	TA (g/L)	Ethanol (% v/v)	Free SO₂ (ppm) {after cold stab & filtering}
Control	144	3.0	11	11	22
Bentonite added to juice	134	3.0	11	11	24

Table 2. Metabolite analyses pre-bottling of Bentonite/Yeast Trial wines

						Residual		
	1st		2nd		TA	Sugar	Amino N	Malic
Trial	Treatment	Yeast	Treatment	рН	(g/L)	(g/L)	(mg/L)	acid (g/L)
T1	Control	EC1118	-	3.0	11	26 ±0.7	31 ±0.1	7 ±0.1
T2	Control	S. bayanus	-	3.0	11	27 ±0.1	31 ±0.4	6 ±0.0
Т3	Control	EC1118	Inoclair	3.0	11	25 ±0.2	31 ±0.9	7 ±0.0
T4	Control	S. bayanus	Inoclair	3.0	11	26 ±0.2	31 ±1.0	7 ±0.0
T5	Bentonite	EC1118	1	3.0	11	25 ±0.0	28 ±0.2	7 ±0.0
Т6	Bentonite	S. bayanus	-	3.0	11	25 ±0.1	26 ±1.1	7 ±0.1
Т7	Bentonite	EC1118	Inoclair	3.0	11	25 ±1.1	27 ±2.3	7 ±0.0
Т8	Bentonite	S. bayanus	Inoclair	3.0	11	27 ±0.7	27 ±0.5	7 ±0.0

*Higher malic acid than clone 115

Next steps....

- Monitoring wines
- Disgorging & Dosage x 8
 (with sugar addition after a dosage sugar trial)
- 2 months on cork
- Protein analysis (concentration and identification)
- Chemical analysis before disgorging, after disgorging without dosage & with dosage
- Foaming analysis & correlation to protein content & type of proteins
- Sensory analysis at Fizz Club

To bento? When to bento? or not to bento?

- Grape proteins affected by variety, vintage, grape maturity, pH and processing techniques.
- Protein composition and concentration differences between varieties and impact i.e. Chardonnay, Sauvignon blanc, Pinot noir and Riesling
- Sodium bentonite affects Chardonnay & Sauvignon Blanc foam more than Pinot noir. Calcium bentonite affects Pinot noir foam more than Chardonnay.
- Combination of both? Timing of addition? Vintage, variety & production style dependent

Next stage of variety x clone x soil type x bentonite trial 2015

Varieties: Pinot noir, Pinot gris, Chardonnay and Riesling

Clones: Clones on two soils on two sites

Soil types: Sandy & clay

Bentonite types: Na, Ca & mixture

Bentonite timing: base wine and tirage

Bentonite type and timing trial

(using bentonite concentrations used by wineries)

In collaboration with Chateau des Charmes Winery and Trius at Hillebrand Winery

^{*}Boxes denote wines at tirage/bottling

**Circles denote base wine fining

Gushing trial

Bottle handling & disgorging environment

Wine composition

Packaging materials

- Light (UV)
- Ambient temperature
- Seasonal timing of disgorging
- Rough handling before disgorging
- Angle of the bottle
- Neck freezing too fast
- Rapid movement of wine from cold room to warm room
- Grape variety
- Vintage variation
- Protein instability
- Wine temperature and dosage temperature
- High bottle pressure
- Tartrate crystals
- Inconsistent mixing during tirage
- Undissolved sugar in the dosage
- Yeast (from inadequate riddling/disgorging)
- High phenolic concentration
- Turbidity
- Malolactic fermentation in bottle
- Cork dust
- · Glass imperfections in the bottle
- Dust in the bottle

GUSHING: Ambient temperature, bottle temperature and wine loss

Gushing

GUSHING: Further analysis

- Pressure
- Yeast count
- Malic acid
- Protein concentration
- Tartrate stability
- Heat stability
- Phenolic concentration

Acknowledgments

- Lisa Dowling (Oenology Research Assistant), Esther Onguta (MSc student) & Ben Wiles (OEVI)
- Trius at Hillebrand Winery, Tawse Winery & Chateau des Charmes for their collaboration and co-operation.
- Fielding Estate winery for bottling assistance and Millesime Sparkling Wine Processing Inc. for disgorging assistance.

FUNDING

- OMAFRA/University of Guelph Partnership Grant especially our Principal Investigator - Prof George Van de Merwe funding the soil/variety/clone, protein/bentonite trial
- Ontario Centres of Excellence (OCE) VIP grant for funding the press fraction study
- Natural Sciences and Engineering Research Council (NSERC)
 Engage grant for funding the Dosage study

THATS ALL FOLKS! Any questions?