

### Bird depredation



- Birds can be hazards or a nuisance
- Bird depredation is a major threat to grape and other berry crops throughout Ontario and worldwide.
- Results in economic losses
  - Direct loss or through disease
- Can be unpredictable
- Need for good protection & not be a nuisance to human population



### Types of bird deterrents



### **Acoustical repellents**

- Propane cannons (bird bangers)
- Electrical sound devices
  - Random noises irritating to birds
  - Distress calls



- Whistling and/or pyrotechnic pistol cartridges
- Other devices
  - Pie plates, noise makers



### Visual deterrents

Cool
Climate
Oenology &
Viticulture
Institute

Brock University

- Scare eye balloons
- Streamers and flash tape
- Flashing lights and mirrors
- Hawk silhouettes, stuffed owls and snakes







## Netting



### **Physical extrusion**

Nets







### Other options



- Chemical repellents
- Falconry
- Trapping of birds
  - Relocation or Euthanasia



www.Benelliusa.com

- Shooting
- UAVs, dancers









# Most problematic bird species in Ontario vineyards









### Problems and solutions



- Usually need a combination of deterrents for success
- Can be time consuming, expensive and not effective under high pressure situations
- Some of most popular methods are becoming problematic in farm/urban situations
  - Noise makers and neighbours don't mix
- New bird deterrent technologies may provide effective and safe bird predation control
  - More tools in a grower's toolbox

### **Project Objectives**



- 1. Test efficacy of new bird deterrents for preventing bird damage on wine grapes and tender fruit;
- Develop methods for quantifying degree of bird pressure and estimating bird pressure and activity;
- Determine any effects that the bird deterrent may have on bird activity/presence and;
- 4. Finally to improve our estimation of the level of bird damage experienced in vineyard blocks

### Light based bird deterrent (2013-15)





### **Experimental Design**



- 8 Sites in 2013 (Riesling, Pinot gris, Chardonnay, Pinot noir, Cabernet franc I and II, Cabernet Sauvignon, Merlot)
- 4 sites in 2014 (Chardonnay, Pinot noir, Cabernet franc, Cabernet Sauvignon for Icewine)
- Criteria for sites:
  - Power supply required
  - Power lines, tree lines, water bodies
  - Remoteness to other bird deterrents
- 5-strata system adopted
  - 4 exterior strata, 1 interior stratum
  - Vines created grid pattern to study spatial variability of bird cluster damage



## Vineyard Set up





## Assessing Bird activity



- Monitored weekly at each site
  - Abundance, distribution of bird species monitored



- Birds flying over, into, out of blocks
- Birds inside rows

dawn to 11 a.m.

Birds on tree lines, power lines



# Bird Damage Assessments Cluster damage





### Bird Damage Assessments Cluster damage



- Damage assessment completed on flagged vines at least three times: once at the start of veraison (baseline), once mid-way, and once before harvest
- Randomly selected clusters fully rotated to choose damage category

Numerical damage scale for assessing crop damage due to bird depredation. Derived from a linear regression graph with the equation y = 0.0443x + 1 (R2 = 0.9846).

| Damage   | Percent damage to |
|----------|-------------------|
| category | crop              |
| 1        | 0 - 22.6 %        |
| 2        | 22.6 - 45.1 %     |
| 3        | 45.1 - 67.7 %     |
| 4        | 67.7 - 90.3 %     |
| 5        | 90.3 - 100 %      |

# Bird Activity (2013) Average bird activity per week





## Bird Activity Notes



- Most common birds
  - American Robins, European Starlings, Finch sp., sparrows
- Seen eating grapes:
  - American robins, eastern bluebirds, sparrows, and finches
  - No starlings were seen actually eating grapes!
- Heavy flocking behaviour not regularly observed
  - More common later in the season
  - Some sites had higher frequency of large flocks
- Raptors were natural bird deterrents

### Initial bird cluster damage (2013)





### Mid-assessment bird cluster damage (2013)





### Final bird cluster damage (2013)





# Mid-assessment bird cluster damage (2014)





## Final bird damage assessments 2014





# RESULTS II - Damage Edge vs. Interior



| Site               |           | Final Cluster       | damage (%)          |
|--------------------|-----------|---------------------|---------------------|
| Variety            | Block     | Edge (Strata 1 - 4) | Interior (Strata 5) |
| Chardonnay         | Control   | 9.16                | 3.61                |
| Chardonnay         | Treatment | 11.41               | 11.64               |
| Pinot blanc        | Control   | 6.54                | 2.58                |
| Pinot blanc        | Treatment | 0.81                | 0.17                |
| Riesling           | Control   | 0.17                | 0.17                |
| Riesling           | Treatment | 0.17                | 0.17                |
| Cab franc 1        | Control   | 0.17                | 0.17                |
| Cab franc 1        | Treatment | 1.29                | 2.58                |
| Cab franc 2        | Control   | 0.60                | 1.38                |
| Cab franc 2        | Treatment | 3.57                | 0.17                |
| Merlot             | Control   | 4.47                | 4.76                |
| Merlot             | Treatment | 2.56                | 2.46                |
| Pinot noir         | Control   | 7.34                | 4.76                |
| Pinot noir         | Treatment | 8.29                | 5.90                |
| Cabernet sauvignon | Control   | 6.80                | 3.99                |
| Cabernet sauvignon | Treatment | 3.23                | 0.17                |

### Activity and damage Cabernet Sauvignon (2013)





# Damage Cabernet Sauvignon maps (2013) Light deterrent located top of upper block









September 4 September 25 November 4

# Progression of bird damage in an Icewine block (2014) Light deterrent located at top of upper block





September 23

October 22

December 3

## General conclusions with light based deterrents



- Bird pressure varied across sites and between sampling dates
- Damage increased as the season progressed
  - bird pressure increased as more grapes are harvested
  - Less fruit = more damage!
- As cluster damage to exterior regions, so does damage to the interior
- Use of units had some impact on bird activity
  - Treatment blocks seemed to limit starling flocks but robins appeared to not be bothered
  - Control blocks more starlings
- Ground feeders like Robins are extremely difficult to control regardless of treatments
- Power source requirement limited placement of units

# American Kestrel Nest Boxes (2014-16)







### Kestrel nest box locations



#### Site information for the 16 Kestrel nest boxes monitored during the 2015 breeding season.

| Site number | Region                                 | Crop        | Year of installation |
|-------------|----------------------------------------|-------------|----------------------|
| 1           | Vineland, Niagara Peninsula            | Grapes      | 2014                 |
| 3           | Jordan, Niagara Peninsula              | Grapes      | 2014                 |
| 4           | Jordan, Niagara Peninsula              | Cherries    | 2014                 |
| 5           | Jordan, Niagara Peninsula              | Cherries    | 2014                 |
| 6           | Jordan, Niagara Peninsula              | Cherries    | 2014                 |
| 7           | Jordan, Niagara Peninsula              | Cherries    | 2014                 |
| 8           | Vineland, Niagara Peninsula            | Grapes      | 2014                 |
| 9           | Simcoe, Norfolk County                 | Blueberries | 2014                 |
| 10          | St. Williams, Norfolk County           | Blueberries | 2014                 |
| 11          | West St. Catharines, Niagara Peninsula | Grapes      | 2015                 |
| 12          | West St. Catharines, Niagara Peninsula | Grapes      | 2015                 |
| 13          | Vineland, Niagara Peninsula            | Grapes      | 2015                 |
| 14          | Vineland, Niagara Peninsula            | Grapes      | 2015                 |
| 15          | Niagara-on-the-lake, Niagara Peninsula | Grapes      | 2015                 |
| 16          | Simcoe, Norfolk County                 | Sweet corn  | 2015                 |
| 17          | Simcoe, Norfolk County                 | Cherries    | 2015                 |

### General methodology



- Monitored nest boxes during breeding season for occupancy
  - General maintenance of boxes and discouraging non-native birds from using box
- Observed boxes during occupancy for eggs and young
- Monitored kestrel activity when present
- Bird counts, activity and behaviour assessed
- Bird damage assessed if kestrel pair present at the site

## Pair of kestrels Vineland, 2014





## Images of Kestrels in nest boxes











## Impact of presence of kestrels on bird counts



- Presence of kestrels in vineyard impacted bird counts and distribution of bird species
- Reduced starling populations and overall count
- Altered starling behaviour less flocking when present

Contingency table of the number of birds recorded vs. the presence of kestrels near nest box p value = 0.001. 2014

| Kestrel |          |        |           |          |         |        |            | Total Bird |
|---------|----------|--------|-----------|----------|---------|--------|------------|------------|
| present | Perching | Raptor | Shorebird | Starling | Swallow | Thrush | Woodpecker | Count      |
| N       | 17       | 0      | 4         | 330      | 10      | 16     | 1          | 378        |
| Υ       | 14       | 5      | 0         | 234      | 23      | 20     | 1          | 297        |

Contigency table of the number of birds recorded vs. the presence of Kestrel near nest box. p value = 0.448. 2015

|   | Blackbird | Crow | Dove | Falcon | Finch | Flycatcher | Shorebird | Sparrow | Starling | Swallow | Thrush | Total |
|---|-----------|------|------|--------|-------|------------|-----------|---------|----------|---------|--------|-------|
| N | 16        | 1    | 18   | 1      | 30    | 10         | 3         | 7       | 41       | 60      | 42     | 229   |
| Υ | 18        | 4    | 12   | 5      | 19    | 6          | 4         | 7       | 30       | 44      | 37     | 186   |

# Kestrel disturbing starlings when at nest box





### Birds recorded vs date of observation



- Numbers and types of birds recorded changed as season progressed
- Starling numbers increased as season progressed; others fairly constant
- Kestrels present reduced # birds flying over crop

Contingency table of the number of birds recorded vs. the date of observation.. p value = 0.001. 2014

| Date of observation | Perching | Raptor | Shorebird | Starling | Swallow | Thrush | Woodpecker |
|---------------------|----------|--------|-----------|----------|---------|--------|------------|
| 17/07/2014          | 7        | 2      | 0         | 110      | 15      | 12     | 0          |
| 24/07/2014          | 16       | 0      | 0         | 217      | 7       | 14     | 2          |
| 31/07/2014          | 8        | 3      | 4         | 237      | 11      | 10     | 0          |

Contingency table of the type of bird activity recorded vs. the presence of a Kestrel near the nest box

N refers to no Kestrel present; Y refers to Kestrel present. Each activity was recorded in relation to the crop area of interest. p value = 0.001

|   | Coming out of | Flying into | Flying over | Inside rows | Tree line |
|---|---------------|-------------|-------------|-------------|-----------|
| N | 21            | 9           | 153         | 29          | 17        |
| Υ | 22            | 8           | 92          | 27          | 37        |

## Kestrel carrying mammalian prey





### Kestrel with bird carcass at nest box





### A welcome winter visitor Eastern Screech Owl







The Cornell Lab of Ornithology

# Summary of studies with American Kestrel nest boxes



- Successful pairs nested at 2 vineyards with another pair present at orchard
  - 10 eggs laid with 7 successful offspring in 2015
- Kestrels impacted bird counts and bird activity/behaviour when present
- Limited impact on controlling damage
  - Kestrels are most effective during nesting and with young
- Crops that mature earlier and coincide with kestrel nesting periods will benefit the most
- Screech owl occupancy during winter months may be beneficial
- Other native bird species utilized boxes
  - Increase biodiversity and reduce impacts of farming on wildlife

### Conclusions



- Assessing bird activity and bird damage is a challenging task.
- Many site specific interactions
  - Bird activity varies significantly between vineyard blocks in terms of pressure and species present.
  - Damage varied within vineyard blocks and between sites
- Bird damage can result in economic losses which is likely not taken into consideration by growers.
- Abundance of fruit results in less % damage
- Smaller and/or isolated blocks, earlier maturing fruit will have more damage

### Acknowledgements



### Collaborators and partners

- All grower cooperators
- Hugh Fraser, Susan Fitzgerald (Fitzgerald & Co.), GGO, Ontario Fruit and Vegetable Growers' Association.
- Project Advisory Committee: S. Fitzgerald, H. Fraser, I. Frensch, B. Gilroy, L. Troup, B. George, N. Charbonneau, J. Mott
- Dr. Catherine Lindell, MSU

#### **Research Assistants:**

Mary Jasinski, Max Legris

### **Funding**

- Ontario Vineyard Improvement Program
- EverEdge IP®
- OMAFRA's Agriculture-Wildlife Conflict Strategic Funding



## Thank you



