

Introduction of research activities

Laboratory focus:

- Medicinal plants and their biosynthetic pathways
 - Madagascar periwinkle (anticancer agents, vinblastine and vincristine)
 - Genome Canada funded project
- Grape funded Projects
 - Vinifera For Life
 Phytochemical analysis of grape pomace powders
 - Appasimento
 - Phytochemical analyses of appasimento grapes when submitted to different drying techniques
 - Sweet and Sticky
 - Phytochemical analyses of icewine grapes from late summer to winter harvest
 - Acyltransferases and Aroma production

Genome Canada Funded October 2009-September 2013

Large scale metabolomic and sequencing analysis of 75 target medicinal plant species

- University of British Columbia
 - University of Calgary
 - NRC, Saskatoon
 - University of Toronto
 - Concordia University
 - Brock University
- PDF Dr. Sayaka Atsumi Masasda
- PhD Candidates: Dylan Levac, Vonny Salim

Genome Canada Funded October 2009-September 2013

Saving humanity with small molecules

Trends in Biotechnology (2012)

High throughput sequencing

Library of gene expression control elements

Trends in Biotechnology (2012)

A sustainable future

Trends in Biotechnology (2012)

Introduction of research activities

Laboratory focus:

- Grape funded Projects
 - Vinifera For Life (Dr Kyung Hee Kim)
 Phytochemical analysis of grape pomace powders
 - Appasimento (Dr Kyung Hee Kim)
 Phytochemical analyses of appasimento grapes when submitted to different drying techniques
 - Sweet and Sticky (Dr Kyung Hee Kim)
 Phytochemical analyses of icewine grapes from late summer to winter harvest
 - Acyltransferases and Aroma production (MSc Brent Wiens)

Grape pomace contains numerous phenolics

Table 1. Concentration of major phenolic acids in grape pomaces (µg/g)

Methanol extract			Residue			
Phenolic acids	Powder	Wet pomace	Seed	Powder	Wet pomace	Seed
Gallic acid	260	12	511	3398	990	874
Catechin	111	23	237	-	-	-
Epicatechin	280	412	166	1132	856	232
Caffeic acid	-	-	-	111	80	31

^{* ()} has been calculated as a percentage, %.

Wet and dry grape pomace contain anthocyanins

Table: [major anthocyanins] in grape pomaces (µg/g)

	Delphinidin	Cyanidin	Malvidin
Wet pomace	35	172	388
Pomace powder	32	117	165

 $[\]ensuremath{^*}$ () has been calculated as a percentage, % .

Wet and dry grape pomace contains high levels of triterpenes like oleanolic acid

Wet and dry grape pomace contains no resveratrol or viniferin

Introduction of research activities

Laboratory focus:

- Grape funded Projects
 - Vinifera For Life (Dr Kyung Hee Kim)
 Phytochemical analysis of grape pomace powders
 - Sweet and Sticky (Dr Kyung Hee Kim)
 - Phytochemical analyses of icewine grapes from late summer to winter harvest
 - Acyltransferases and Aroma production (MSc Brent Wiens)

Living tissues are involved in biosynthesis as they mature.

Castellarin & DeGasparo BMC Plant Biol (2007) 7: 46.

- 1. Genotype-specific anthocyanin biosynthesis.
- 2. Variation based on differential expression of anthocyanin pathways.
- 3. Color shifts from red to blue with increased hydroxylation of anthocyanins

Are living tissues involved in biosynthesis as they die? Yes

p-coumaroyl-CoA

- The arrival of autumn triggers activation of anthocyanin pigmentation in Maple
- Colors vary from yellow to orange to red
- Due to activation of flavonoid and anthocyanin biosynthesis
- Accumulation of pigments in palisade mesophyll cells produce colors.
- Ecological value (light screen to prevent stress from photoxidative dammage)?

Are living tissues involved in biosynthesis as they die? Yes

- NND activated during tobacco drying
- Ethylene mediated Induction of CYP82Ev1
- Nornicotine converted to nitrosamines and glycation byproducts

Identification of an key chemical marker for real vs 'fake' ice wine grapes (2010).

Oct.14 Oct. 29 Nov.12 Nov.26

- Metabolite A increases about 4-fold by December in Vidal grapes
- Metabolite A increases about 3-fold by the end of **November in Cab franc grapes**
- 3. Other metabolites do not change substantially (B, C and Malvidin).
- **Conclusion:**
 - Mature grapes are biochemically active to make this metabolite in spite of the fact that they are dying (dead?)
 - Metabolite A is an important physiological marker for real vs 'fake' ice wine grapes.

Identification of an key chemical marker for real vs 'fake' ice wine grapes (2011).

- 1. Experiments of 2010 were repeated in 2011 with Cabernet franc grapes.
- 2. Metabolite A increases to 94 μg/GDW by December in Cabernet franc grapes.
- 3. Conclusion:
 - Reproducibility of the results from 2010 confirms that Metabolite A can be used as a physiological marker for real vs 'fake' ice wine grapes.

Identification of an key chemical marker for real vs 'fake' ice wine grapes (2011).

Present studies:

- •Expression analyses of pathway-specific genes during ice grape formation.
- Demonstration of functional pathway enzymes during ice grape formation.

- 1. Experiments of 2010 were repeated in 2011 with Reisling grapes.
- 2. Metabolite A increases about 10-fold by December in Reisling grapes!
- 3. Conclusion:
 - Mature grapes of <u>different</u>
 <u>varieties may all be</u> biochemically active to make this metabolite in spite of the fact that they are dying (dead?)
 - There appear to be varietyspecific differences in the amounts of Metabolite A that are made during the production of ice wine grapes.
 - Reproducibility of the results in another variety suggests that Metabolite A can be used as a physiological marker for real vs 'fake' ice wine grapes.

Introduction of research activities

Laboratory focus:

- Grape funded Projects
 - Vinifera For Life (Dr Kyung Hee Kim)
 Phytochemical analysis of grape pomace powders
 - Sweet and Sticky (Dr Kyung Hee Kim)
 Phytochemical analyses of icewine grapes from late summer to winter harvest
 - Acyltransferases and Aroma production (MSc Brent Wiens)

Vitis labrusca vs. Vitis vinifera

"Foxy", wines distasteful	Non-"foxy", wine sales \$120B/yr
Native to North America	Native to Europe
Used for juices, jams, jellies	Used in winemaking
Welch's SMUCKERS COUNTY OF THE PROPERTY OF THE	SHANA

Vitis labrusca (Concord) AMAT (VIAMAT) is responsible for "foxy" methyl anthranilate

VIAMAT is a member of the BAHD family of plant acyltransferases

Wang & De Luca, 2004.

VIAMAT transcript, protein levels, and activity increase throughout ripening

At the onset of ripening, methyl anthranilate starts to accumulate as well.

Ripening-induced pattern is common with other fruit scent-related acyltransferases

Phylogeny of 88 biochemically characterized BAHD acyltransferases Climate Oenology & Viticulture **Brock University** ÔН Aromatic, polyamine, Alkaloid..., acylation Methyl anthranilate **Anthocyanin** HQ_CO₂H acylation HO" ŌΗ Phenylpropanoid ОН acylation Salutaridinol-7-0-

Alkaloid and benzoic acid acetylation

What about *V. vinifera*?

- BAHD acyltransferases in wine grape?
- Biological roles in determining characteristic sensory qualities?
- Practical uses in grape cultivation/breeding programs

V. vinifera genome contains 5 highly similar VIAMAT-like genes

 Bioinformatic analysis shows at least 51 putative BAHD acyltransferases in *V. vinifera* genome (none yet characterized)

 5 candidates show 86 to 95% sequence identity to VIAMAT

The volatile alcohols & esters of mature Sauvignon Blanc berries?

Data from Chaudhary et al., 1964

Acetyl CoA: *cis*-3-hexenol acetyltransferase (CHAT) of Sauvignon blanc berries

VvsbAAT1 is a CHAT rather than an AMAT!

Conclusions

- Recombinant VvsbAAT1 catalyzes the formation of cis-3-hexenyl acetate.
- Compared with VIAMAT, VvsbAAT1 displays a completely different expression profile.
- These results suggest VvsbAAT1 may have a different biological role in V. vinifera compared with VIAMAT in V. labrusca.

Anthocyanin Biosynthesis

is the best known pathway of Secondary metabolism in plants

.OH

contaminated with North American grapes.

However anthocyanins with sugars on the 5 position are more stable and their presence could be valuable for wine color stability?

Identification of the 5GT responsible for the formation of anthocyanin diglucosides

- The inability of most European grapevines to produce 3,5-di-O-glucosides has long been used to classify wines according to their varietal origin.
 - This study showed that V. vinifera has a 5GT gene with 2 mutations that render the protein inactive.
 - Correction of the 2 mutations reactivated the V. vinifera 5GT gene
 - This explains why revertants have not been observed

Janvary et al, Agric Food Chemistry (2009) 57: 3512-3518

Colocalization of *5GT* and *AMAT* to the same area of chromosome 9 explains why FOXY & diglucosides are linked.

- V. vinifera (Pinot Noir) genome shows that:
 - CAO23156 is 95% identical on the amino acid level with V. labrusca anthraniloyl-CoA:methanol anthraniloyl transferase (AMAT).
 - Colocalization of the two genes would explain genetic linkage between these 2 traits in hybrid cultivars.

Janvary et al, Agric Food Chemistry (2009) 57: 3512-3518

Summary

Phytochemical analysis of grape pomace powders

Phytochemical analyses of icewine grapes from late summer to winter harvest

Metabolite A can be used as a physiological marker for real vs 'fake' ice wine grapes.

Acyltransferases and Aroma production (MSc Brent Wiens)

VvsbAAT1 catalyzes the formation of cis-3-hexenyl acetate

Acknowledgements

Financial assistance: VFL-Ontario Centers of Excellence S&S-FED-DEV-ARC

Researchers:
Dr Kyung Hee Kim
Brent Wiens