

Developing Ontario Appassimento Wines: The impact of drying method, yeast strain and botrytis on wine quality and consumer choice

> CCOVI Lecture Series March 16, 2016 Dr. Debra Inglis

Why Develop Appassimento Wines for Ontario

- Can we further develop flavours in our grapes for use in high end wines despite cool, wet, less optimal fall months
- Adopt methods and technologies from other regions around the world that mitigate production risks, stabilize wine quality differences year-to-year and contribute to distinctive regional wine styles
 - Ripen fruit post harvest off-the-vine, then ferment into wine (appassimento wines) – unique Ontario style

Cool Climate Oenology 8

Viticulture Institute Brock University

Cool Climate Oenology & Viticulture Institute

Brock University

Things to watch for in Appassimento Grape Drying that may impact wine

- Increase in oxidation compounds during the drying process in the grapes that translate into oxidation faults in the wine (acetic acid, acetaldehyde and ethyl acetate)
- botrytis fungal development during the drying process from favourable humidity conditions (above 90% RH) that takes away from wine quality

The Appassimento Project -5 year

- 1. Comparative study of 5 techniques used to dry the grapes using Cabernet franc
- 2. Yeast strain trial: comparison of a yeast isolate from local riesling grapes for use in appassimento wine production
- 3. Impact of *Botrytis cinerea* on chemical profile, sensory attributes and consumer acceptance of appassimento wines

Project1 : Comparative study of 5 techniques used to dry the grapes using Cabernet franc

Cool Climate Oenology & Viticulture Institute

Brock University

Kiln

Cabernet franc: 5 drying regimes compared

On-vine

Drying chamber

Greenhouse

Barn

Project1 : Comparative study of 5 techniques used to dry the grapes using Cabernet franc

- Elucidate for each method the environmental conditions present during the different stages of drying to enhance the understanding of the method and the potential impact of climate-related risks
- For 4 seasons
 - Cabernet franc grapes, comparing drying regimes
 - First year was a trial year to work out methods, three complete years of data for 4 of 5 techniques
 - Fruit changes during drying monitored, fermentations completed each year, chemical and sensory analysis completed on the wines
 - Final year, we need to complete all volatile flavour analysis for past wines

Grapes and Drying Targets in Brix

- Cabernet franc were donated from
 Pillitteri Estates Winery each year
- Target Brix of fruit at harvest: 23°Brix
- Target Brix for drying: 26°Brix and 28°Brix
- All wines fermented using the same protocol, in triplicate, using EC1118 yeast from Lallemand

Cool Climate Oenology & Viticulture Institute

Brock University

On-Vine Drying: Temperature and Relative Humidity

Long Duration Treatment (2 plus months)

- Exposure to climate risks
- Rain, fog, dew, wind, freeze-thaw, wildlife
- Highly variable temperature and humidity

Barn Drying: Temperature and Relative Humidity

Mid to long term duration (1-2 months)

- Protected from rain, wildlife but impacted by external climatic conditions
- Temp and humidity correlated to external climate conditions (r = 0.836)
- Not as variable as on-vine

Greenhouse Drying: Temperature and Relative Humidity

Cool Climate Oenology & Viticulture Institute

Brock University

Mid Duration Treatment (weeks)

- Protected from external climate (rain)
- More variability in humidity, can help control internal conditions with heat and air circulation

Kiln Drying: Temperature and Relative Humidity

Kiln Kiln Kiln (%) ³⁰ 25 20 20 20 15 ature 20 dua 15 4-Oct 5-Oct 6-Oct 7-Oct 8-Oct Days Date

Short duration (days)

- Protected from rain, wildlife
- Not correlated to external climate conditions
- High air flow
- Control temp, targeting approx. 30°C
- 2012, temp was increased on day 1 by mistake at winery

Drying Chamber: Temperature and Relative Humidity

Cool Climate Oenology & Viticulture Institute

Brock University

Longest duration

- Protected from rain, wildlife
- No external climate influence, temp and humidity controlled
- Temperature stays low, Humidity stays low
- Differences in conditions in 2011 vs 2013,
 - more botrytis in 2013, higher humidity at start in chamber

Drying treatments require different times to reach target Brix

29.0

28.0

27.0

solids ("Brix") 5200

aldulo

24.0

23.0

22.0

03-Oct

13-Oct

23-Oct

02-Nov

Sample Date

2011

29.0

28.0

27.0

solids ("Brix) 50.0

s aluble s

24.0

23.0

22.0

17-Oct

25-Oct

02-Nov

10-Nov

Sample Date

--ON-VINE

-KILN

-BARN

12-Nov

-GREENHOUSE

22-Nov

Change in **soluble solids** for drying conditions.

-ON-VINE

----KILN

-BARN

---- DRYING CHAMBER

26-Nov

GREENHOUSE

18-Nov

	26°Brix Drying Period (days)			28°Brix			
Drying				Drying Period (days)			
Condition	2011	2012	2013	2011	2012	2013	
On-Vine	30	43	33	42	56	61	
Kiln	3	1	5	5	4	6	
Barn	22	15	34	29	41	59	
Greenhouse	22	12	38	29	18	59	
Drying Chamber	22	-	52	44	-	88	

Cool Climate Oenology & Viticulture Institute

iversity

Things to watch for in Appassimento Grape Drying that may impact wine - increase in oxidation compounds in the grapes like acetic acid, acetaldehyde and ethyl acetate during the drying process

Acetic Acid concentration increases with Kiln drying, something to watch

- All acetic acid values are quite low, even in the kiln
- Highest was 0.13 g/L acetic acid in 2012
- Higher acetic acid in kiln dried fruit NOT correlated to acetic acid bacteria on the fruit

Institute **Brock University**

Viticulture

Jan14

Cool Climate Oenology &

2013

Other compounds that varied through drying

- Acetaldehyde increases with all treatments
 - Most pronounced with on-vine and kiln but still < 12 mg/L
- Malic acid drops in all treatments
 - Does not accumulate in berries with water loss
 - Usually between 2-2.5 g/L malic acid in the whithered fruit
- Glycerol increases 10 to 20-fold across treatments in 2011, 2013
 - little change in 2012 (free of botrytis)

Glycerol increases 10 to 20-fold across treatments in 2011, 2013, little change 2012 (free of botrytis)

2011

Glycerol is a byproduct of botrytis

Polyphenolics 2011-2013 (V. DeLuca) Extraction and Identification of 25-30 different polyphenols

- Simple phenols (Gallic acid, Galloyl glucoside, Caftaric Acid)
- Resveratrols (transresveratrol, cis and transpiceid)
- Procyanidins (Procyanidin, Procyanidin Dimers, Catechin, Epicatechin
- Flavonoids (Kaempferol, Kaempferol Glucosides, Quercetin, Quercetin glucoside, Quercetin glucuronide, Isorhamnetin glucoside, Myricetin, Myricetin glucoside, Myricetin galactoside, Myricetin rhamnoside
- Anthocyanins (Delphinidin-3-0-glucoside, Petunidin 3-O-glucoside, Malvidin-3-Oglucoside, Malvidin 3-O-acetylglucoside, Malvidin 3-O-coumaroylglucoside

O‱OH

Cool Climate Oenology & Viticulture Institute

Brock University

Polyphenolic analysis summary (V. Deluca Laboratory)

Cool Climate Oenology & Viticulture Institute Brock University

- Many polyphenols rise by 10 to 30 % in appasimento grapes compared to control grapes irrespective of the drying treatment used
 - Simple phenols, Resveratrols, Procyanidins, Flavonoids & Anthocyanins
- Resveratrol levels were higher in growing seasons when disease pressure was higher.
- Metabolite concentrations achieved were not specific to the drying method.
- Polyphenolic metabolite profiles have not yet been correlated to sensory attributes of the wines
 - Is there impact on wine perception
- Focus of the laboratory has now shifted to a search for transcript protein markers.

Seed Analysis during Appassimento drying separated by drying technique (B. Kemp Laboratory)

Cool Climate Oenology & Viticulture Institute

Brock University

26 Brix

Seed Analysis during Appassimento drying separated by drying technique (B. Kemp laboratory)

Cool Climate Oenology & Viticulture Institute

Brock University

28 Brix

22.5 Brix

26 Brix

Seed Analysis during Appassimento drying separated by drying technique (B. Kemp Laboratory)

Cool Climate Oenology & Viticulture Institute

Brock University

28 Brix

22.5 Brix

26 Brix

Total Extractable seed tannin in appassimento grapes during drying process before fermentation (2013, B. Kemp Laboratory)

Treatment	22.5°Brix Epicatechin (ug/ml extract)	26°Brix Epicatechin (ug/ml extract)	28°Brix Epicatechin (ug/ml extract)
On-vine	1230 ±59 b	1360 ±52 a	1371±55 a
Kiln	1230 ±59 a	1257 ±24 a	1277 ±42 a
Greenhouse	1230 ±59 b	1330 ±50 a	1403 ±68 a
Barn	1230 ±59 c	1394 ±77 b	1572 ±59 a
Drying			
chamber	1230 ±59 b	1320 ±19 a	1366 ±24 a

¢

Cool

Climate Oenology & Viticulture

Institute Brock University Total Extractable skin tannin in appassimento grapes during drying process before fermentation (2013, B. Kemp Laboratory)

Treatment	22.5°Brix Epicatechin (ug/ml extract)	26°Brix Epicatechin (ug/ml extract)	28°Brix Epicatechin (ug/ml extract)
- ·	00.40	10 0	
On-vine	60 ±13 a	49 ±9 a	24 ±13 b
Kiln	60 ±13 ab	41 ±14 b	68 ±17 a
Greenhouse	60 ±13 a	33 ±6 b	62 ±12 a
Barn	60 ±13 a	48 ±13 a	43 ±17 a
Drying			
chamber	60 ±13 b	60 ±20 ab	77 ±20 a

ф

Cool

Climate Oenology & Viticulture

Institute Brock University

Appassimento Wines High Ethanol Wines

	26°Brix			28°Brix			
Drying	Ethanol (% v/v)			Ethanol (% v/v)			
Condition	2011	2012	2013	2011	2012	2013	
On-Vine	12.6	15.0	14.8	13.7	16.4	15.6	
Kiln	14.2	15.1	15.1	15.3	16.3	15.8	
Barn	14.8	14.9	16.8	14.8	16.0	17.0	
Greenhouse	13.3	15.3	14.8	15.5	16.7	16.4	
Drying Chamber	14.4	-	16.0	15.5	-	17.0	

Descriptive Analysis of Wines 2011, 2012, 2013 vintages (G. Pickering Laboratory)

- Descriptive Analysis was performed for all wines for all 3 years using a trained sensory panel.
- Triplicate evaluations for up to 11 treatments each year!
 - CCOVI's custom sensory evaluation lab
 - 4-6 months after bottling
- Figures visualize the results of the Principal Component Analyses , which were performed on those descriptors that were <u>significantly different</u> between wines (p(F)<0.05).
- Labels in CAPITAL letters indicate flavor descriptors, those in lower case are aroma and colour descriptors.

Volatile compounds for flavour analysis

- GC-MS method now developed to analyze wines for volatile compounds
- Identification and quantification of volatile compounds in the wines, statistical analysis and interpretation of results
- Completed for all wines, data being analysed

Preliminary cost analysis 2011 vs 2012 vs 2013

• to generate the same must volume as the control for the various treatments, what % increase in grapes are required?

Cool Climate Oenology & Viticulture Institute

Brock University

Project 2: Can yeast choice overcome wine oxidation fault issues and assist in developing a unique Ontario style. - new yeast isolate from local grapes that is a low producer of VA and ethyl acetate -Jennifer Kelly, PhD student

A Novel Yeast for Regional Signature Wines

- An indigenous yeast with fermentative capacity was isolated from Riesling Icewine grapes
- Brock Isolate: Saccharomyces bayanus
 - Produces significantly lower concentrations of oxidation compounds (acetic acid, ethyl acetate and acetaldehyde) in finished wine vs. *Saccharomyces cerevisiae* EC1118 (Inglis and Heit, 2013)
 - Potential value in Appassimento wine
 - Grapes dried post-harvest may start with higher concentrations of oxidation compounds
 - ⁻ Intent is to not further increase compounds in finished wine

Project Aims (Jennifer Kelly, PhD student)

Characterize *S. bayanus* Brock Isolate for Appassimento winemaking:

- What are the upper sugar limits of juice that the yeast can ferment to dryness?
- How does it perform vs. *S. cerevisiae* EC1118?
 - Fermentation kinetics, oxidative compounds in finished wine, sensory profile of the wine
- Is there a consumer preference of appassimento wines fermented with the Brock yeast versus the commercially accepted EC1118 yeast?

Winemaking Outline

Cool Climate Oenology & Viticulture Institute

Fermentation Kinetics How do the yeast species compare at each drying target?

æ Cool Climate Oenology & Viticulture Institute **Brock University**

24.5 °Brix

Can *S. bayanus* Brock Isolate produce similar ethanol levels to *S. cerevisiae* EC1118 in Appassimento wines?

Cool

Climate Oenology & Viticulture Institute

Brock University

Can *S. bayanus* Brock Isolate reduce oxidation compounds in the wine?

Acetic Acid Ethyl Acetate 0.4 40 *** *** 0.35 35 *** *** 0.3 Ethyl Acetate (mg/L) 30 *** Acetic Acid (g/L) *** 0.25 25 *** 0.2 20 ** 0.15 15 0.1 10 0.05 5 0 0 21.5 24.5 26 27.5 21.5 24.5 26 27.5 (Control) (Control) **Brix Level Brix Level** *= *p*<0.05 -----S. cerevisiae- EC1118 **= *p*<0.01 ----S. bayanus- Brock Isolate ***= *p*<0.001

æ

Cool Climate Oenology 8

Viticulture Institute Brock University

Sensory Evaluation

- Descriptive analysis
 - How does the profile differ from *S. cerevisiae* EC1118?
- Panel = 11 discriminatory palates
 - Attributes are identified and quantified using human subjects
 - Trained over 12 weeks
 - 15 cm line scale

Spider Plot: *S. bayanus* Brock Isolate Trends Control (21.5 °Brix) vs. 26.0 °Brix vs. 27.5 °Brix All Attributes

PCA Chart 27.5 Brix *S. cerevisiae* versus *S. bayanus*

Cool Climate Oenology & Viticulture Institute Brock University

Variables (axes F1 and F2: 63.10 %)

Sensory analysis conclusions

S. bayanus Brock Isolate in Appassimento Wine

- Shifted the sensory profile of the wine towards increased black fruit flavour and aroma
- Reduced sourness and astringency vs. *S. cerevisiae* EC1118 commercial yeast
- Has demonstrated its feasibility for industry use
- Consumer Preference????

Cool Climate Oenology & Viticulture Institute

Brock University

Project 3: Role of Botrytis in adding complexity to wines -should we always discard botrytis infected fruit or can we first assess the impact of botrytis on wine profile? -recent research points to a role of some botrytis infected fruit to add complexity in appassimento wines (noble rot form) -Investigated 10% botrytis infection in the grapes

Botrytis infected Cabernet franc

Three Categories based on colour and physical appearance

Separated fruit into 3 categories incubated in humid chamber to confirm botrytis

Day 0

Berries from each category were plated out, botrytis confirmed in sporulating positive control and red berries

Cool Climate Oenology & Viticulture Institute

Chemical Comparisons of three fruit categories to confirm botrytis

	Black Berries (healthy berries)	Red Berries (botrytis berries)	Sporulating Berries (botrytis berries)
Brix	27.9	31.3	34.3
Glycerol (g/L)	0.1	9.3	11.1
Gluconic Acid (g/L)	0.1	1.5	1.4

Project 3: Impact of *Botrytis cinerea* on appassimento fruit – Sorting Team

Cool Climate Oenology & Viticulture Institute

Project 3: Impact of *Botrytis cinerea* on appassimento fruit

Brock University

Black, uninfected berries

Fermentation set up with 0 and 10% by weight of botrytis infected berries

Project 3: Juice Analysis prior to fermentation with EC 1118

Juice Metabolite	Control	10% Botrytis	
Brix	27.6 ± 0.2	28.1 ± 0.1	
рН	3.65 ± 0.02 3.66 ± 0.01		
TA (g/L Tartaric Acid)	4.8 ± 0.0	4.7 ± 0.0	
Acetic Acid (g/L)	<0.02	<0.02	
Glucose (g/L)	132 ± 5	128 ± 4	
Fructose (g/L)	145 ± 10	142 ± 3	
Glycerol (g/L)	0.04 ± 0.0	1.2 ± 0.1	
Gluconic Acid (g/L)	0.14 ± 0.1 0.29 ± .02		
Ammonia (mg N/L)	7 ± 1 7 ± 0		
Amino acid (mg N/L)	91 ± 3	85 ± 0	

Project 3: Fermentation Kinetics

æ

Cool

Climate Oenology & Viticulture Institute Brock University

Project 3: Control vs 10% Botrytis Wine Analysis

Wine Metabolite	Control	10% Botrytis	
рН	3.97 ± 0.03	4.01 ± 0.02	
TA (g/L Tartaric Acid)	6.7 ± 0.0	6.4 ± 0	
Ethanol (% v/v)	16.4 ± 0.2	16.4 ± 0.2	
Residual Sugar (g/L)	0.17 ± 0.01	0.24 ± 0.02	
Acetic Acid (g/L)	0.28 ± 0.00	0.35 ± 0.00	
Acetaldehyde (mg/L)	108 ± 10	113 ± 8	
Glycerol (g/L)	11.5 ± 0.4	12.7 ± 0.4	
Gluconic Acid (g/L)	0.23 ± 0.02	0.34 ± 0.01	

Project 3: 0 vs 10% Botrytis wines Sensory Analysis

2013 Appassimento Trial: 0% vs. 10% *Botrytis cinerea* infection Descriptive Analysis Results- All Attributes

Consumer Preference Among Appassimento Wines

Cool Climate Oenology & Viticulture Institute Brock University

- Compared the consumer preference of Appassimento wines
 - EC1118 *S. cerevisiae* 0% Botrytis (27.6 Brix)
 - EC1118 *S. cerevisae* 10% Botrytis infection (28.1 Brix)
 - S. bayanus Brock Isolate 0% Botrytis (27.5 Brix)
- Consumer Preference study carried out in Guelph at Compusense
 - 153 consumers participated
 - Each participant received one wine at a time
 - Scored on a 9-point hedonic scale where 9="like extremely" and 1="dislike extremely"
 - Preference was determined from liking score
 - Values of 6+ are representative of "good" CONSUMER ACCEPTANCE
 - Anything over 7 is "excellent" consumer preference, but is usually reserved for products like chocolate

Consumer Preference

Means and ANOVA results

	p-value	<i>S. cerevisiae</i> 0% Botrytis	<i>S. cerevisae</i> 10% Botrytis	<i>S. bayanus</i> 0% Botrytis
Overall Liking	0.16	6.2	6.1	6.4

Good Consumer Acceptance of Wine Style
There was no significant difference among the three tested products

Summary

- Ripening grapes off-vine after harvest to produce appassimento wines represents a new and exciting innovation for the Ontario wine industry
 - overcome climatic barriers to obtaining fully ripe grapes
 - develop a unique signature wine style for Ontario.
- Process produces full-bodied red wines of high quality and <u>consumer appeal</u>
- Wine flavour moderated through
 - drying method
 - choice of fermenting yeast
 - level of botrytis infection in the fruit

Partners

Cool Climate Oenology & Viticulture Institute

Brock University

VRIC

- Michael Brownbridge, Bernard Goyette, Jianbo Lu, Kimberly Cathline
- Irina Perez-Valdes (mold analysis)
- Harvest team from Cherry Ave and VRIC

Niagara College

• Terence van Rooyen, students, staff

CCOVI

- Gary Pickering, Vincenzo DeLuca, Jim Willwerth, Belinda Kemp, Debra Inglis
- Lisa Dowling (Berry sampling, analysis)
- CCOVI Harvest team
- Kyung-Hee Kim, Lisa Dowling, Tony Wang, Fei Yang, Linda Tremblay, Lynda van Zuiden (chemical analysis)
- Fred Diprofio, Lisa Dowling for wine making
- Jen Kelly, Ian Bock, Cristina Huber, Caitlin Heit- students

Industry

- Pillitteri Estates Winery
- Cave Spring Cellars
- Reif Estate Winery
- European Planters
- Sunrise Greenhouses
- Integra (Graham Rennie)
- Grape Growers of Ontario
- Ontario Grape and Wine Research
 Inc
- Angel's Gate

Government

- Ontario Ministry of Research and Innovation ORF RE program
- Agriculture and Agrifood Canada (DIAP program)

Cool Climate Oenology & Viticulture Institute

Brock University

Thank you

Cheers!

Brocku.ca/ccovi Debbie Inglis: dinglis@brocku.ca