New tools to fine-tune quality harvests: spectroscopy applications in viticulture

Ralph Brown, PhD, PEng CCOVI Associate Fellow

1. Visible/NIR Spectroscopy of Grapes

- Interaction of matter with light (absorbance, reflectance) depends upon chemical composition
- Atomic and molecular energy levels (vibration, rotation, spin energy, etc.) are specific to quantum energy of a particular wavelength
- Spectral response pattern reveals aspects of chemical composition – "chemometrics"
- Estimate fruit quality, e.g., total solids (°Brix), titratable acidity, pH, phenolics, anthocyanins from spectral characteristic

The Electromagnetic Spectrum

Spectral absorption of some grape components...

- Chlorophyll absorbs blue and red, reflects green
- Anthocyanins absorb green, reflect blue and red
- Water O-H bond peaks at 760, 970, 1450, 1940 nm

http://en.wikipedia.org/wiki/Chlorophyll#cite_note-18

Brimrose Luminar 5030 NIR – "le Vigneron"

The Brimrose "le Vigneron" NIR System

- Portable handheld instrument scans one grape berry at a time in NIR spectrum
- Can be used in vineyard, or with fruit samples
- Season-to-season prediction has not been robust, needs re-calibration
- Requires contact with single berry, many berries must be sampled for representative values
- Expensive, time consuming but has shown good performance

Portable VIS/NIR Transflectance Probe

- Developed and tested in Chile
- Uses inexpensive Visible/NIR spectrometer with fibreoptic probe
- Good estimation of Brix, pH and anthocyanins (R² values were >0.85 with most above 0.90)
- Probe measures one berry at a time, requires contact with fruit – time consuming, need many measurements

1. Free-air VIS/NIR Spectroscopy Trials

Why free-air?

- Don't have to be in contact with fruit
- Larger field of view, more representative
- Compatible with mounting on harvester

Why VIS/NIR?

- Inexpensive spectrometer, standard optics
- Information from visible spectrum (colour)

Integrate VIS/NIR instrument with yield monitor?

OCE – Etech /U of Guelph project with Lakeview Vineyard Equipment Inc.

Free-air VIS/NIR setup used in 2008 (Wade Milton)

Laptop and USB fibreoptic spectrometer with halogen lamps used for composite sample reflectance

Collaborator: J-L Groux, Stratus Vineyard

(with K. Bailey, R. Blackadder, 2008-2010)

- Cab Sauvignon, Cab Franc, Syrah blocks sampled from early post-veraison to harvest
- Sample procedure (200-berry composite sample)
 - Sample front, back, top, bottom and shoulders of bunches, alternate on upper and lower wires, both sides of row
- Use inexpensive USB spectrometer for visible and NIR reflectance characteristics
- Scan entire composite sample (rapid, portable, more representative of vineyard block)
- Chemical analysis in Andy Reynolds lab at Brock

Partial least-squares regression for Brix using VIS/NIR and Unscrambler® 2008

Predictions from Spectral Reflectance

		2008 Brimrose	2008 PLS VIS/NIR	2008 PLS/GA VIS/NIR
Sugar	R ²	0.702	0.785	0.868
(° Brix)	RMSEP	0.97	0.98	0.66
рН	R ²	0.595	.855	0.842
	RMSEP	0.06	0.06	0.05
TA	R ²	0.595	0.696	0.848
(g/L) Tartaric acid	RMSEP	0.73	0.64	0.84
Phenolics	R ²	0.434	0.484	0.488
(mg/L) Gallic acid	RMSEP	35.15	34.88	34.74

Setup for 2009-2010 reflectance measurements (Mike Fadock)

- Enclosure designed to exclude ambient light effects
- Non-reflective container allowed re-orientation of berries between measurements
- Repeat measurements after gentle shaking

Weekly Averaged Grape Reflectance – 2010

(weeks 2-11 shifted down to separate curves)

2009 PLS Predictions – Brix and pH

Prediction of Berry Values from VIS/NIR Reflectance

2009				2010
	Range	R ²	RMSEP	
° Brix	16.3-24.0	.84	0.65	° Brix
рН	3.1-3.5	.58	0.05	рН
TA (g/L tartaric acid)	6.9-12.3	.56	0.59	TA (g/L tartar acid)
Phenols (mg/L gallic acid)	185-385	.27	31.7	Phenols (mg, gallic acid)
Anthocyanins (mg/L malvidin)	725-1370	.65	74.7	Anthocyanin (mg/L malvidi

2010			
	Range	R ²	RMSEP
° Brix	17.1-26.6	.89	0.65
рН	3.1-3.8	.81	0.05
TA (g/L tartaric acid)	5-13.8	.58	0.86
Phenols (mg/L gallic acid)	110-275	.25	27.9
Anthocyanins (mg/L malvidin)	470-1130	.17	111

How robust is PLS model for prediction?

 Is spectral response consistent from year to year, and between similar varieties?

- Does system have to be re-calibrated each year?
 - Can we build on each previous dataset?

PCA Loadings – 2009 and 2010 (consistent year-to-year spectral contribution)

2010 Brix Prediction from 2009 Model

2010 pH Prediction from 2009 Model

Future of spectral methods for rapid fruit quality

- Currently good results for Brix, pH, TA
- Potential for rapid estimation of phenolics and anthocyanins
- Drawbacks to commercial equipment –
 expensive, need to calibrate, time consuming
- New technology for spectral sensing and information processing promises less expensive, more useful instruments soon...

Recent developments in fruit reflectance applications....

New Pellenc Spectron™

portable handheld

vis/NIR spectrometer

Based on research by
Gilles Rabatel with
"le tromblon" at
Cemagref,
Montpellier, France

From www.pellenc.com/en/description.asp

2. Spectroscopy of leaves and canopy

- Visual assessment of vines (scouting) is important disease, nutrition, water stress, etc.
- Other information may be there but we are limited to the visible spectrum
- Instrumental spectroscopy of canopy and leaves in ultraviolet (UV), visible, near-infrared (NIR) can be useful...

Leaf spectral reflectance and vine health...

Leafroll virus image courtesy CFIA

- Good fruit quality starts with a healthy, wellbalanced vine
- Plant stress shows up in the foliage – photosynthesis apparatus and other plant pigments affected
- These absorb and reflect in different parts of the spectrum, cause changes in leaf reflectance

Leaf responses to physiological stress

- Environmental stress (e.g., ozone, powdery mildew)
 increased reflectance in 535-640 nm range, 670 nm
 unresponsive (Gregory Carter, 1993)
- Phylloxera-infested vines in California showed increased green reflectance (~550 nm) in remote sensing images (Lee Johnson, 1999)
- Anthocyanin biosynthesis in leaves from drought, extreme temperatures and light caused reduced green reflectance (Steele et al., 2009)
- NIR reflectance is relatively constant except under extreme water stress

Vegetation Reflectance Indices

Normalized Difference Vegetation Index
 (NDVI) used in remote sensing is related to photosynthetically active biomass

NDVI =
$$(\rho_{NIR} - \rho_{RED} / \rho_{NIR} + \rho_{RED})$$

Normalized Green-Red Reflectance (NGRR)
uses difference between green (550 nm) and
red (670 nm) for detecting plant stress

NGRR =
$$\rho_{NIR}$$
 - $(\rho_{GREEN} - \rho_{RED})/\rho_{NIR}$ + $(\rho_{GREEN} - \rho_{RED})$

Can we use leaf reflectance to monitor vine status?

- 30-Bench Winemakers Riesling vineyard (Precision Viticulture project)
- Investigate single-leaf reflectance in situ and monitor vine and fruit performance
- Measure reflectance of fully-expanded leaves
 (5 per vine) monthly for ~ 500 sentinel vines
- Also determine soil moisture, vine water stress, harvest yield and quality

Taking leaf reflectance measurements at 30-Bench Winemakers vineyard

Normalized Green-Red Reflectance (NGRR) with Soil Moisture at 30-Bench Vineyard

NGRR and °Brix at harvest - 2007

Leaf reflectance and fruit quality

- There is a relationship between plant stress (moisture, disease, etc.), leaf reflectance (NGRR) and subsequent fruit quality
- But relationship is complex, correlations are not reliable enough for easy direct prediction
- Other factors (crop load, weather, pruning) have large effects
- Leaf reflectance has potential to map precision viticulture management zones – e.g., differential harvest

Handheld instruments for leaf reflectance

Fieldscout CM1000 NDVI meter Spectrum Technologies Inc. www.specmeters.com/store/cm1000ndvi

CCM-200 chlorophyll meter Opti-Sciences Inc. www.optisci.com/ccm200.htm

Automated sensor for canopy reflectance

Greenseeker ™

Images courtesy Ntech Industries, Inc.

Automated Sensors used for NDVI Mapping

GreenSeeker® NDVI Sensor on a quad bike

Images courtesy Ntech Industries, Inc.

NDVI map from GreenSeeker® sensor

Map of canopy reflectance (NDVI) used to make harvest decisions...

Is there potential for using vineyard canopy reflectance in Precision Viticulture?

- Greenseeker® and CropCircle® systems are commercially available
- Evidence that NDVI variation (biomass) is related to harvest quantity and quality
- May be more convenient than remote sensing to define management and harvest zones
- Need more research on linkages between vine balance, health and fruit quality

New tools to fine-tune quality harvests: spectroscopy applications in viticulture

Thank you!