

Communicate with your vines....

- Visual assessment of vines (scouting) is important disease, nutrition, water stress, etc.
- Other information may be there but we are limited to the visible spectrum
- Instrumental spectroscopy of leaves and fruit in ultraviolet (UV), visible, near-infrared (NIR) can be useful...

1. Leaf spectral reflectance and vine health...

- Good fruit quality starts with a healthy, wellbalanced vine
- Plant stress shows up in the foliage – photosynthesis apparatus and other plant pigments affected
- These absorb and reflect in different parts of the spectrum, cause changes in leaf reflectance

Spectral absorption of some plant pigments

- Chlorophyll a, b absorb blue and red, reflect green
- Xanthophyll absorb blue, reflect green to red
- Carotenoids absorb blue, reflect green to red
- Anthocyanins absorb green, reflect blue and red

Leaf responses to physiological stress

- Environmental stress (e.g., ozone, powdery mildew) increased reflectance in 535-640 nm range, 670 nm unresponsive (Gregory Carter, 1993)
- Phylloxera-infested vines in California showed increased green reflectance (~550 nm) in remote sensing images (Lee Johnson, 1999)
- Anthocyanin biosynthesis in leaves from drought, extreme temperatures and light caused reduced green reflectance (Steele et al., 2009)
- NIR reflectance is relatively constant except under extreme water stress

Vegetation Reflectance Indices

Normalized Difference Vegetation Index
 (NDVI) used in remote sensing is related to photosynthetically active biomass

NDVI =
$$(\rho_{NIR} - \rho_{RED} / \rho_{NIR} + \rho_{RED})$$

Normalized Green-Red Reflectance (NGRR)
uses difference between green (550 nm) and
red (670 nm) for detecting plant stress

NGRR =
$$\rho_{NIR}$$
 - $(\rho_{GREEN} - \rho_{RED})/\rho_{NIR}$ + $(\rho_{GREEN} - \rho_{RED})$

Phylloxera study in Victoria, Australia

- Cabernet Sauvignon and Cabernet Franc vineyards where phylloxera is suspected
- 50 fully-expanded intact leaves selected at random from each of 4 blocks
- Leaves taken from clean and phylloxera-infested blocks (verified by digging up vines)
- Measured leaf reflectance with ASD Fieldspec Pro™ (350-2400nm)
- Compared leaf reflectance characteristic (NGRR) for infested and clean blocks

Light reflectance characteristic of grape leaves

(mean of 50 leaves)

Change in green-red reflectance indicates phylloxera infestation

Phylloxera in Cabernet Franc vineyard

Can we use leaf reflectance to monitor vine status?

- 30-Bench Winemakers Riesling vineyard (Precision Viticulture project)
- Investigate single-leaf reflectance in situ and monitor vine and fruit performance
- Measure reflectance of fully-expanded leaves (5 per vine) monthly for ~ 500 sentinel vines
- Also determine soil moisture, vine water stress, harvest yield and quality

Taking leaf reflectance measurements at 30-Bench Winemakers vineyard

Normalized Green-Red Reflectance (NGRR) with Soil Moisture at 30-Bench Vineyard

NGRR and 'Brix at harvest - 2007

Leaf reflectance and fruit quality

- There is some relationship between plant stress (moisture), leaf reflectance (NGRR) and subsequent fruit quality
- Relationship is complex, correlations are not reliable enough for easy prediction
- Other factors (crop load, weather, pruning) have large effects
- Leaf reflectance may have potential to map precision viticulture management zones

Automated sensor for canopy reflectance

Greenseeker ™

Images courtesy Ntech Industries, Inc.

Automated Sensors used for NDVI Mapping

GreenSeeker® NDVI Sensor on a quad bike

Images courtesy Ntech Industries, Inc.

NDVI map from GreenSeeker® sensor

Map of canopy reflectance (NDVI) used to make harvest decisions...

Courtesy Caine Thompson, Spatial Solutions NZ

Is there potential for using vineyard canopy reflectance in Precision Viticulture?

- Greenseeker® and CropCircle® systems are commercially available
- Evidence that NDVI variation (biomass) is related to harvest quantity and quality
- May be more convenient than remote sensing to define management and harvest zones
- Need more research on linkages between vine balance, health and fruit quality

2. Free-air VIS/NIR Reflectance of Grapes

- Absorbance and reflectance of light depends upon chemical composition of material
- Reflectance pattern reveals aspects of chemical composition
- Estimate fruit quality, e.g., total solids (°Brix), titratable acidity, pH, phenolics, anthocyanins from spectral reflectance characteristic

The Brimrose "le Vigneron" NIR System

- Portable handheld instrument scans one grape berry at a time in NIR spectrum
- Requires contact with berry, many berries must be sampled for representative values
- Can be used in vineyard, or with fruit samples
- Expensive, time consuming but has shown good performance
- Season-to-season prediction has not been robust, needs re-calibration

Brimrose Luminar 5030 NIR – "le Vigneron"

Free-air VIS/NIR Spectrometry

- Collaborator J-L Groux, Stratus Vineyard Cab Sauvignon, Cab Franc, Syrah 2008 & 2009
- Use inexpensive USB spectrometer for visible and NIR reflectance characteristics
- Sample fruit according to normal pre-harvest procedure (200-berry composite sample)
- Scan entire composite sample (rapid, portable, more representative)

Free-air VIS/NIR setup used in 2008

Laptop and USB fiber-optic spectrometer with halogen lamps used for composite sample reflectance

Setup for 2009 reflectance measurements

- Enclosure modified to exclude ambient light effects
- Non-reflective container allowed re-orientation of berries between measurements
- Repeat measurements after gentle shaking

Partial least-squares regression for Brix using VIS/NIR

2009 PLS Predictions – Brix and pH

Predictions from Spectral Reflectance

		2008 Brimrose	2008 PLS	2008 PLS/GA	2009 PLS/GA
Sugar	R ²	0.702	0.785	0.868	0.912
(° Brix)	RMSEP	0.97	0.98	0.66	0.59
рН	R ²	0.595	.855	0.842	0.717
	RMSEP	0.06	0.06	0.05	0.05
TA	R ²	0.595	0.696	0.848	0.945
(g/L) Tartaric acid	RMSEP	0.73	0.64	0.84	0.62
Phenolics	R ²	0.434	0.484	0.488	N/A
(mg/L) Gallic acid	RMSEP	35.15	34.88	34.74	N/A

Some recent developments in fruit reflectance applications....

- New Pellenc Spectron™
 portable handheld
 spectrometer
 - Based on research with "le tromblon" at Montpellier, France
- Integration of VIS/NIR spectrometer with harvest yield monitor
 - U of Guelph and Lakeview
 Vineyard Equipment

From www.pellenc.com/en/description.asp

Integrate VIS/NIR instrument with yield monitor

OCE – Etech /U of Guelph project with Lakeview Vineyard Equipment Inc.

Future of spectral methods for rapid fruit quality

- Currently good results for Brix, pH, TA
- Potential for rapid estimation of phenolics and anthocyanins
- Drawbacks to commercial equipment –
 expensive, need to calibrate, time consuming
- New technology for spectral sensing and information processing promises less expensive, more useful instruments soon...

