
"Do grapes SCREAM for frost tolerance?"

Annette Nassuth

CCOVI Lecture series, February 12,2018

Grapevines in Canada

Vitis riparia

-40°C

-15 to -20°C

▶ Winter damage may reduce *V. vinifera* yield up to 54%

Plants cannot move

► They need to adapt to their environment!

Freezing tolerance increases in autumn

► Shorter days with low, non-freezing temperatures

The CBF pathway contributes to cold acclimation

CBF pathway

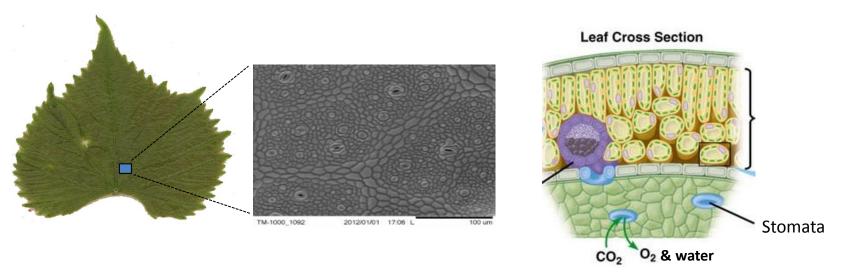
 $F_{c} = 4^{\circ}C$

ICE*

— CBF —

superior frost tolerance

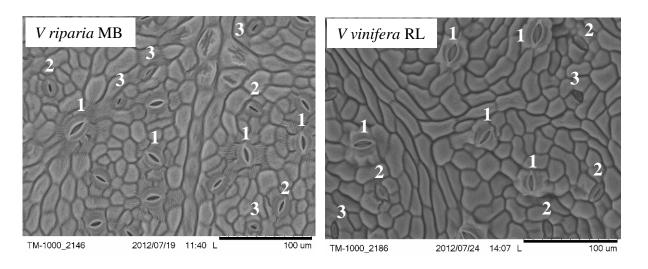
Grape:


4 genes

7 genes

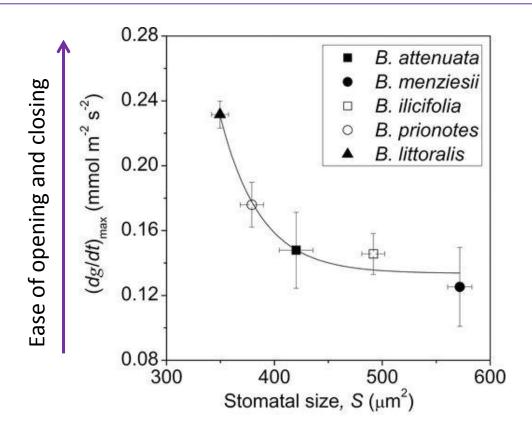
ICE = Inducer of CBF Expression

ICE protein has dual function

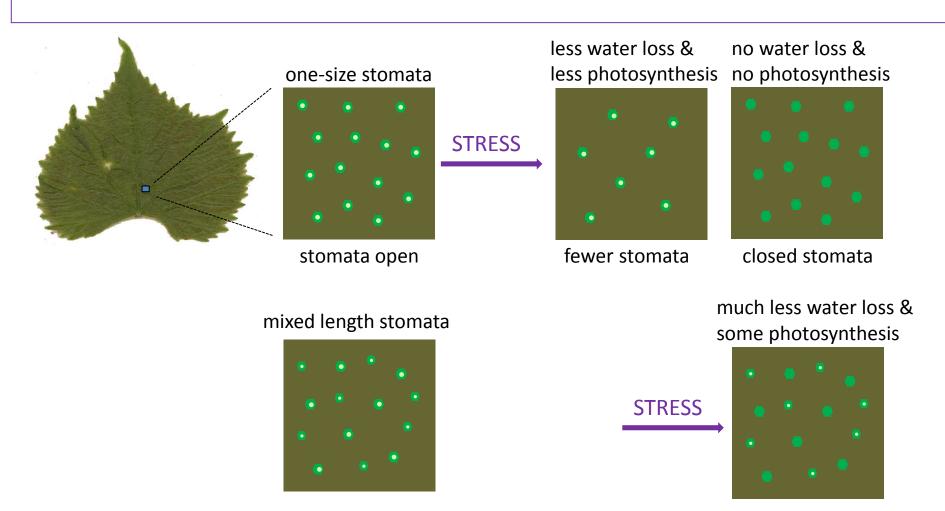

stomata
balance photosynthesis and water loss

Is stomata development correlated to frost tolerance?

Grape leaves contain different types of stomata


► Grape has 3 types of stomata

▶ Differ in size and position



Smaller stomata open and close faster

➤ Smaller stomata allow better regulation of water loss and photosynthesis

Mixture of stomata is thought to give an advantage

- ► Sunken stomata lose less water
- ► Small stomata can open easier under stress conditions

© ANassuth Drake et al 2012

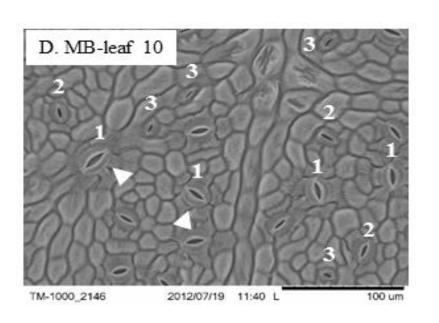
V. riparia has more and smaller stomata than V. vinifera

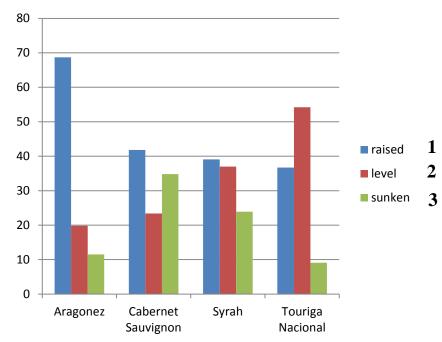
- Stomatal density (# stomata/area) V. riparia (MB and Guelph) >V. vinifera (Riesling)
- ► Stomatal length

V. riparia (MB and Quebec) < V. vinifera (Riesling)

Range

3.8-34.5


4.2-40.4

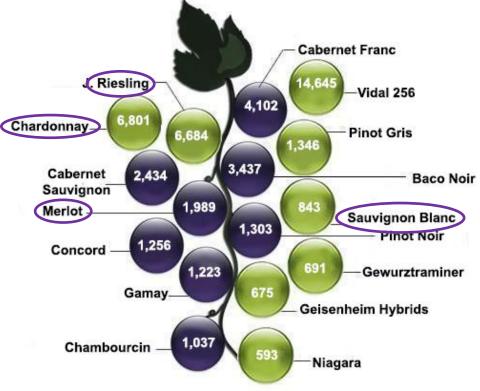

Average 10.3-26.7 11.3 – 27.1

13.0 - 21.0

V. riparia is more frost tolerant than V. vinifera What about different cultivars?

Each grape cultivar has a characteristic number and type of stomata





► Aragonez is less drought tolerant than CS and TN Has fewer smaller, sunken stomata!

Ontario Grape and Wine Industry

Production of Grapes: Top Varieties 2015 (in tonnes)

Ontario Grape and Wine Industry

Stratus Vineyards

Stomata analysis of Ontario cultivars

► Can stomata distinguish between more cold hardy and less cold hardy grape cultivars?

```
Chardonnay, Riesling (>FT); Merlot, Syrah (<FT)
```

- ► Is this is the case at different times of the year? 3x/year (start till end of growing season)
- ► Is this is the case at different sites?

 2 different sites (Stratus and CDC)
- ➤ Does it differ between plants grafted on different rootstocks?

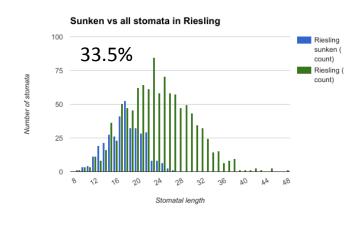
3 different rootstocks (3309, SO4, Gloire)

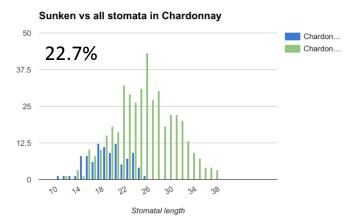
September & July stomatal density (SD) correlate with cultivar, site and rootstock

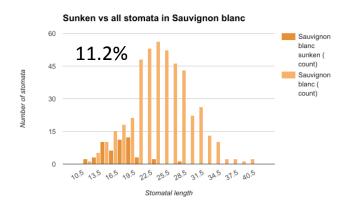
Vineyard	Cultivar and rootstock	July Stomata/mm² Mean SE	August Stomata/mm² Mean ± SE	September Stomata/mm² Mean ± SE
CDC	Riesling239-3309	306 ± 34	354 ± 47	311 ± 13
CDC	Riesling239-RipG	288 ± 20	328 ± 29	295 ± 33
CDC	Chard548-SO4	281 ± 21	250 ± 23	289 ± 8
CDC	Riesling239-SO4	273 ± 5	?±	271 ± 21
Stratus	Riesling21B-SO4	270 ± 12	333 ± 24	258 ± 29
Stratus	Chard548-3309	251 ± 11	246 ± 36	226 ± 3
CDC	Merlot347-SO4	215 ± 22*	264 ± 20	212 ± 18
CDC	SB530-SO4	207 ± 24	265 ± 23	252 ± 24*
Stratus	SB530-RipG	207 ± 23	220 ± 14	232 ± 9
Stratus	Merlot347-3309	191 ± 23	259 ± 28	226 ± 32
Stratus	Merlot181-RipG	185 ± 21	275 ± 26	219 ± 6
Stratus	Merlot?-S04	178 ± 11	187 ± 75	176 ± 3

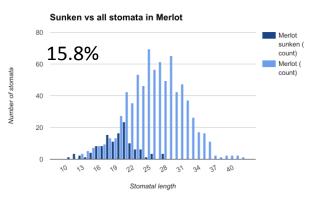
YES
*outlier

- ► Riesling Chardonnay Sauvignon blanc Merlot
- ► CDC Stratus 3309 Riparia Gloire SO4


September sunken stomata density correlates with cultivar, site and rootstock

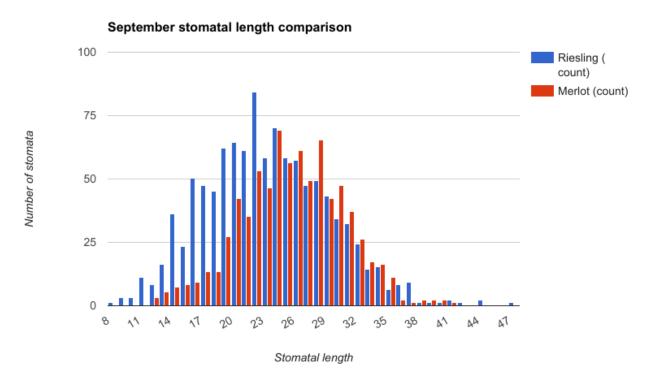

Vineyard	Cultivar	September Stomata/mm² Mean ± SE	September Sunken stomata/mm ² Mean ± SE	% sunken stomata
CDC	Riesling239-3309	311 ± 13	132 ± 14	43
CDC	Riesling239-RipG	295 ± 33	94 ± 17	32
CDC	Chard548-SO4	289 ± 8	67 ± 13	23
CDC	Riesling239-SO4	271 ± 21	94 ± 17	35
Stratus	Riesling21B-SO4	258 ± 29	71 ± 19	27
Stratus	Chard548-3309	226 ± 3	37 ± 16	16*
CDC	Merlot347-SO4	212 ± 18	42 ± 9	20
CDC	SB530-SO4	252 ± 24	37 ± 9	15
Stratus	SB530-RipG	232 ± 9	17 ± 4	7
Stratus	Merlot347-3309	226 ± 32	44 ± 13	20
Stratus	Merlot181-RipG	219 ± 6	24 ± 8	11
Stratus	Merlot?-S04	176 ± 3	21 ± 5	12


YES
*outlier


- ► Riesling Chardonnay Merlot & Sauvignon blanc
- ► CDC Stratus 3309 Riparia Gloire & SO4

Sunken stomata are the small stomata in all CVs

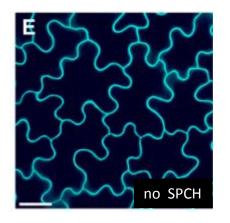
Sunken stomata sizes

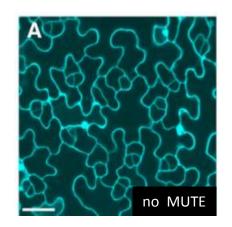

Riesling: 8.9 - 26.4 (vs - 47.2 for all)

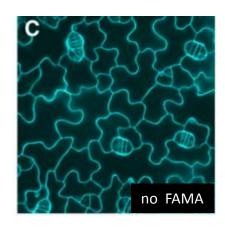
Chardonnay: 10.9 - 25.3 (vs - 37.9 for all)

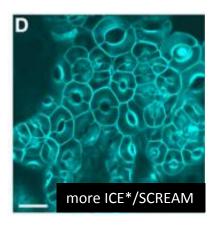
Sauvignon blanc: 10.9 - 28.2 (vs - 39.0 for all)

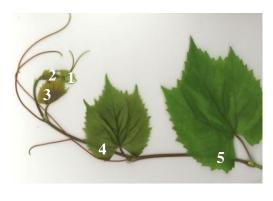
Merlot: 10.5 - 27.6 (vs - 41.2 for all)


Riesling leaves contain more stomata than Merlot; and these are small stomata!




More frost tolerant cultivar has more small, sunken stomata How is stomata development regulated?


SCREAM = ICE directs the development of stomata in Arabidopsis



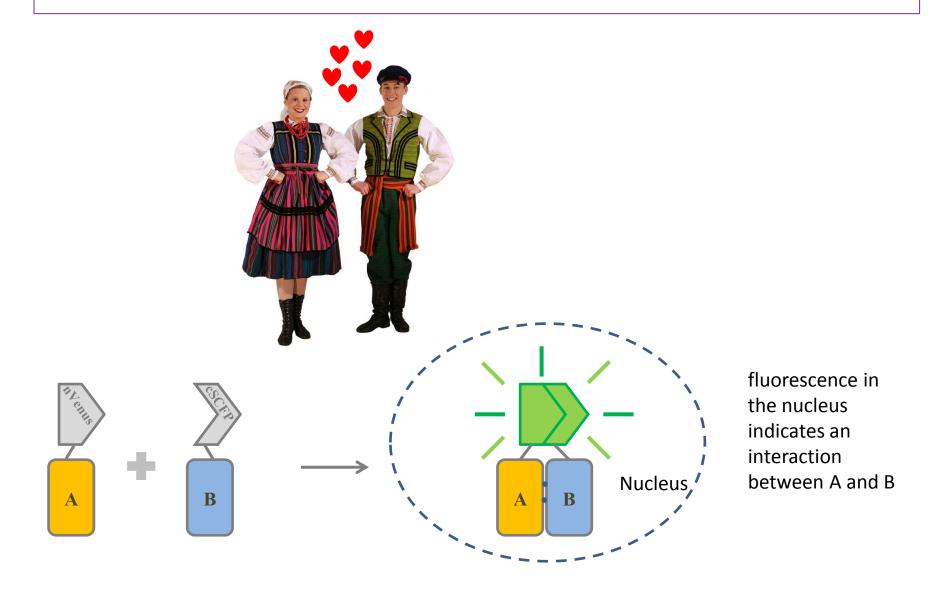
ICE pairs with different partners to facilitate steps in the development of stomata

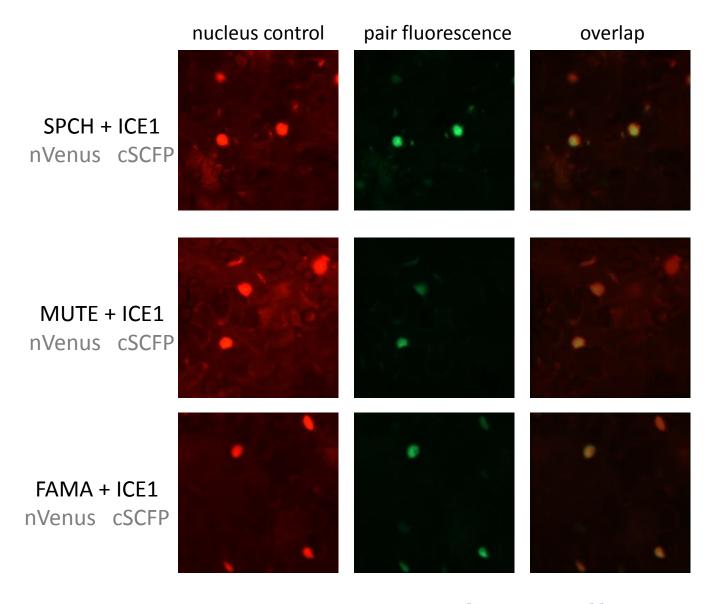
Leaf	1	3	5	11
SPCH				
MUTE				
FAMA(E)				
FAMA(L)				
ICE1,2,3,4				

- ► Grape *SPCH*, *MUTE* and *FAMA* genes are expressed as expected for stomata development in grape
- ► All 4 grape *ICE* genes are expressed in all leaves

Can they pair with SPCH, MUTE or FAMA?

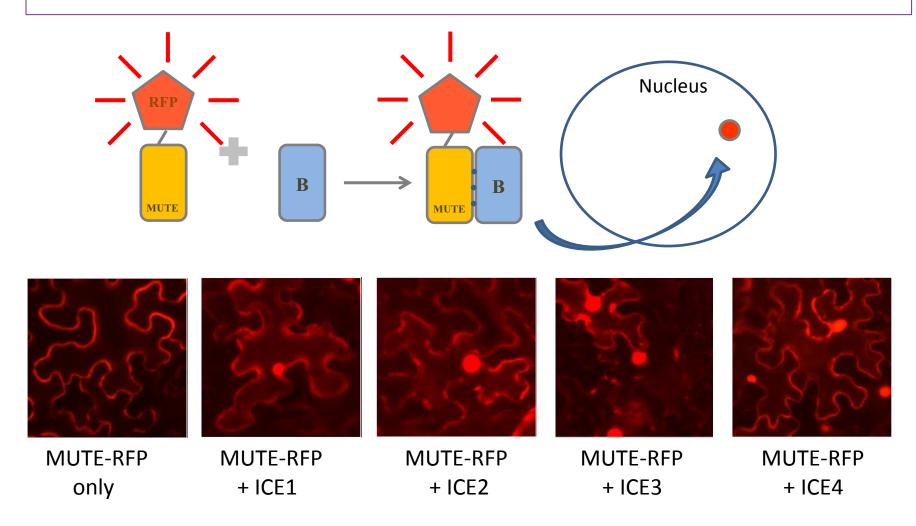
Different pairs have different activities!





Greek dancing is different from Polish dancing!

Which ICE protein can pair with SPCH, MUTE or FAMA?


Analyzing pair formation between proteins

Grape ICE1, ICE2, ICE3 and ICE4 all pair with SPCH, MUTE and FAMA, in the nucleus

Analyzing pair formation between proteins

Grape ICE1, ICE2, ICE3 and ICE4 all pair with MUTE

Summary

► More frost tolerant grapes have a higher number of small, sunken stomata

▶ July and September give best correlation with known cultivar bud hardiness data from CCOVI

► Site and rootstock might also affect stomata results

WARNING: Data from just 1 year with 1 type of weather!

Data not all statistically significant

Future work

- ➤ Confirm data in other years (repeatable results, also with different weather?)
- ► What effect does low temperature have on stomatal development? (number and type)
- ► What is the relation between ICE1, 2, 3 and 4 and stomata type

Acknowledgements

Chateau des charmes

Stratus vineyards

Atik Rahman

Chevonne Carlow

Christine Lee

Ali Ebadi

Alison Edge

Layla Alibabai

Financial assistance from

Thank you!