January 2011 CCOVI lecture series

"Empowering growers: using molecular tools to select for freeze-tolerant grapes"

Annette Nassuth Molecular and Cellular Biology University of Guelph

Outline of presentation

- Example trait: Berry color genes and alleles select visually or with molecular marker
- Freezing tolerance
 complex trait
 genes involved in freezing tolerance
 selection with molecular markers
- ► Conclusions and future work
- Acknowledgements

Berry color has a genetic basis

Cabernet franc

Sauvignon blanc

Cabernet sauvignon

Berry color

Berry color is determined by several genes

- **▶** Different variants of genes = alleles
- ► Grape plant has 2 alleles for each gene (diploid)

Berry color VvMybA1 gene: red or white allele

Cabernet franc

X

Sauvignon blanc

Cabernet sauvignon

Walker et al. as quoted in Pelsy 2010

Berry color – sports show gene mutations

Molecular technique (PCR) can determine which allele(s) are present

- ► All cultivars with **red** berries have the **red** allele
- ▶ All cultivars with white berries lack the red allele

CAN SELECT FOR RED BERRY COLOR BY LOOKING OR BY SELECTING RED ALLELE

Freezing temperatures in Ontario cause yield loss of wine grapes

- ► Incorporate genetic basis for superior freezing tolerance = allele from wild grape *Vitis riparia*
- Cross *V. riparia* with cultivated grape *V. vinifera*
- ► Backcross with wine cultivars to restore wine quality

Selecting for superior freezing tolerance

► Analysis of freezing tolerance is not easy Need cold period to trigger freezing tolerance

Analyzing freezing tolerance (FT)

Dr. Thomas Zabadal, Michigan State University

BUD LT50 °C	NOV	DEC	JAN
Riesling	-21.2	-23.5	-25.6
Chardonnay	-21.5	-22.7	-23.2
Gewurtztraminer	-20.8	-21	-23.1
Pinot Blanc	-19.3	-20.5	-24.8

Quamme et al. 1973; Gusta et al. 2009

Collaborative project by AAFC, the Grape Growers of Ontario and CCOVI

- Maximum freezing tolerance varies depending on genetic background and growing conditions
- One-time-a-year field test under nature's control

Selecting for superior freezing tolerance

► Field selection for freezing tolerance is not easy, Try molecular selection based on alleles?

- ▶ Sequence genes from *V. riparia* and *V. vinifera*
- Design molecular markers for alleles

Selecting for superior freezing tolerance

- ► Probably need a combination of superior genes (alleles) to obtain superior freezing tolerance
- ► WHICH ALLELES FROM WHICH GENES?

 Test *V. riparia CBF1* and *CBF4 (VrCBF1/VrCBF4)*

Test VrCBF1 and VrCBF4 in Arabidopsis

Analyzing freezing tolerance

Expose plants to freezing temperatures, then thaw

Quantify ions = electrolytes with conductivity meterFT plants leak only at much lower temperatures

Vitis CBF1 and 4 increase freezing tolerance

Highest freezing tolerance with VrCBF4

Vitis CBFs increase drought tolerance

Vitis CBFs increase drought tolerance

Highest drought tolerance with VrCBF1

However: *Vitis* CBFs also affect plant growth and development

Vitis CBFs affect flowering

days to flower

VrCBF1 and VrCBF4 DELAY FLOWERING

Siddiqua and Nassuth submitted

Hypothetical model

Selecting for superior freezing tolerance

- Field selection for freezing tolerance is not easy
- Probably need a combination of superior genes (alleles) to obtain superior freezing tolerance
- "Freezing tolerance" genes (alleles) are also involved in other traits (timing of expression important)

DETERMINE CORRELATION BETWEEN ALLELE(S) AND FREEZING TOLERANCE

Analysis with molecular markers

VrCBF1 alleles

VrCBF4 alleles

Analysis with molecular markers

► Alleles of
CBF1B and CBF4B are
candidate freezing
tolerance markers

	CDE1	allala		CDE4	allala	
Vitis	CBF1 allele		_	CBF4 allele		
Accessions	A/C	В		A	В	
	333/345 bp	303 bp		192 bp	216 bp	
Chardonnay	+	_		+	+	
Riesling	+	_		_	+	
MB	+	+		_	+	
QC	_	+		_	+	
ON	_	+		_	+	
MT	_	+		_	+	
ND	_	+		_	+	
MN	_	+		_	+	
IA	_	+		_	+	
NH	_	+		_	+	
VT	_	+		_	+	
NY	_	+		_	+	
WI	_	+		_	+	
CT	_	+		_	+	
NJ	_	+		_	+	
CO	_	+		_	+	
MO	_	+		_	+	
KS	_	+		_	+	
FR	+	+		_	+	
Tocai	+	_		_	_	
Freisia	+	_		+	+	
Felicia	+	+		+	+	

CONCLUSIONS & FUTURE WORK (Basic research)

- Vitis species have several CBF pathway genes
 3 ICE 8 CBF many COR genes
- VrCBF1 and VrCBF4 impart stress tolerance
 VrCBF4 best for freezing tolerance
 VrCBF1 best for drought tolerance
 Both affect growth and flowering time
 Different (Vv) alleles might be less optimal
- ► Analyze further *Vitis ICE* and *CBF* genes

 Determine which genes are desirable

 Transient expression/transformation system

CONCLUSIONS & FUTURE WORK (Applied research, partly in ORF application)

- Develop molecular markersCurrently for alleles of 7 putative FT genes
- ► Test markers on additional *V. vinifera* cultivars Merlot, Sauvignon blanc, Cabernet franc, Pinot noir
- ► Test progeny of *V. vinifera* Riesling x *V. riparia*Correlate markers with bud hardiness in field*

 Develop laboratory freezing test
- ► Backcross superior progeny with vinifera cultivar* Select backcross progeny with FT markers

Thank you

OMAFRA & NSERC Discovery funding