

Kevin Usher

P. Bowen, T. Lowery, C. Bogdanoff, J. Urbez-Torres, D. O'Gorman, M. Cliff Summerland Research and Development Centre

Canopy Management

- Trellis design
- Canopy structure
- Pruning
- Shoot thinning
- Shoot positioning
- Shoot tipping
- Leaf removal
- Fruit removal
- Fruit positioning

Shade Effect On Fruit Quality

Reduced:

- Phenolics (tannins, anthocyanins, etc...)
- Fruity/floral flavour and aroma (eg. monoterpenes)
- Sugar

Increased:

- Malic acid
- Disease incidence
- Herbaceous flavour and aroma

Benefits of Leaf Removal and Open Canopies

- Opens the fruiting zone
- Changes light quality and quantity
- Changes fruit temperature
- Increases air circulation reducing humidity
- Better spray penetration
- Quicker hand harvest
- Useful for leaf hopper control
- Changes fruit composition and quality

How Much Fruit Exposure

- Depends on goals and methods of exposure
- Open canopies provide dappled light
- Dappled light in fruiting zone promotes phenolic and some flavour development
- Optimum exposure levels and timing may be different for white and red grapes

1. Compositional Evaluation of Okanagan Pinot Noir and Chardonnay Grapes

Usher K.1, Girard B.1, Bowen P.1, Eggers N.2, and Beulah M.1

- 1) Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, B.C., Canada
- 2) Okanagan University College, Kelowna, B.C., Canada

Study Design

- Chardonnay clone 76 40 vineyards
- Pinot noir clone 115 40 vineyards
- Two plots within each vineyard
- 5 vines (one panel) per plot
- Three consecutive years

Vine, Canopy and Fruit Environment

Vine size, canopy density and fruit environment

•cane / cordon

- •circumference
- trunk circumference
- canopy height and width
- canopy volume

- hedging
- ·leaf removal
- cluster exposure
- canopy openness
- canopy surface area

Leaf quality

·leaf area

·leaf dry weight

•petiole dry weight

·leaf greenness

·leaf nitrogen content

Fruit and yield components

crop load

•yield per vine

clusters per vine

average cluster weight

berry fresh weight

•skin fresh weight

•skin dry:fresh ratio

Fruit Composition

```
Basic composition 

• Soluble solids
• Titratable acidity
• pH
                       Aroma  
Aroma Volatiles (norisoprenoids (NIP))
Glycosyl glucose (flavour potential)
                    Nitrogen

• Total nitrogen
• Yeast assimilable nitrogen content (YANC)
• Free Amino Nitrogen (FAN)
• Ammonium
                             Inorganic ions (Potassium, Phosphate, Sodium, Calcium, etc...)

Organic acids (tartrate, malate, citrate, isocitrate)
```

Yearly Differences in Total Norisoprenoid

Optimal temperature for NIP biosynthesis is 10 – 20 °C

Average Daily Temperature

Total Norisoprenoids vs Row Direction and Slope Aspect

Cluster Exposure Affects Norisoprenes

2. Manipulating Grape and Wine Vegetative Aromas through Vineyard Management Practices.

K. Usher, P. Bowen, C. Bogdanoff, D. Gregory, J. Drover Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, B.C.

VSP Sprawl

Experimental Design

2 Varieties

- 1) Cabernet Sauvignon
- 2) Merlot

4 Treatments X 4 Blocks

- 1) Sprawl and early tipping (early July)
- 2) Sprawl and late tipping (late July)
- 3) VSP and early tipping
- 4) VSP and late tipping

4 Sampling dates

- 1) Pre-veraison
- 2) Post-veraison
- 3) Commercial maturity
- 4) Extended maturation

Vine Measurements

Canopy dimensions:

Height

Width

Shoot length

Shoot number

Lateral number

Lateral length

Crop:

Clusters per vine

Cluster weight

Berry weight

Skin weight

Seed weight

Seed number

Fruit zone light penetration:

Direct radiation Indirect radiation Canopy gaps Canopy area

Fruit Composition

Basic: Sugar

Total acidity

рН

Volatiles: Pyrazines

Phenolics: Total phenolics

Flavanols

Tannins

Anthocyanins

Fish Eye Photography

December 21

% Open space in canopy and direct sun flecks in fruiting zone in Cabernet Sauvignon

Basic Composition

Tannin content in late October fruit

1

0

VSP

0.5

Seed Tannin (% dry weight)

- Seed tannin was higher in sprawl canopies
- No difference between tipping treatments

Skin Tannin (% dry weight)

- Skin tannin was higher in merlot sprawl canopies
- No difference between tipping treatments

1.5

0.5

Sprawl

0

VSP

Sprawl

Cabernet Sauvignon IBMP content

Merlot IBMP Development

IBMP (Early - Late Tip)

3. The Economics and Quality Impacts of Leaf Removal, Cluster Positioning and Shoot Positioning

K. Usher, T. Lowery, P. Bowen, C. Bogdanoff, D. Gregory, J. Drover

Investigate fruiting zone canopy management and its impact on fruit quality/maturity and evaluate the economics of leaf removal in commercial vineyards.

- 1) Survey the industry to evaluate the current leaf removal practices including timing, level of exposure and the goal(s) that growers expect to achieve.
- 2) Determine the economics of early season leaf removal using cost/benefit analysis.
- Investigate the impacts of leaf removal timing and severity on grape production for improved quality.
- 4) Use non destructive cluster positioning and shoot positioning to alter fruit exposure level and determine the effects on quality and physical characteristics of the fruit.

Timing of Leaf Removal

Pre bloom (physical and chemical changes)

- Reduces Yield lighter and looser clusters, smaller berries
- Increases sugar, phenolics, colour
- Increased quercetin (copigmentation)
- Lower seed mass and number

Fruit set (mainly chemical changes)

- Advanced ripening
- Acclimatize to sun exposure sunburn
- Quercitin levels increase up to 10x (copigmentation)
- Tannin precursors decreased
- Reduce bunch rot and powdery mildew
- Reduce malate, TA and K⁺

Veraison (chemical but Less known)

- Little known
- Risk sunburn

Leaf Removal in the Okanagan

Level of exposure

- How much leaf removal?
- Cooler side of vine or both sides?
- Do site conditions, row direction and canopy structure matter?

Timing

- How does timing affect Okanagan grapes?
- Do the results match the goals?

Concerns

- Sunburn
- Hail damage after early season removal
- Economics does it pay off?
 - Quality
 - Pesticide efficiency and disease reduction
 - Quicker harvesting

 Survey the industry to evaluate the current leaf removal practices including timing, level of exposure and the goal(s) that growers expect to achieve.

Survey Design

- 53 growers participated , 51/53 did leaf removal.
- 10 questions about leaf removal: how, when, why, how much does it cost, etc....
- Survey followed up with a site visit to measure when and how leaf removal was done

Survey Summary

- 53 vineyard owners/managers surveyed
- 96% do leaf removal
- 87% hand,13% mechanical,
- 33% do LR more than once in the season
- Estimated cost \$160/acre (average for hand removal)

Reasons for doing leaf removal:	RED	WHITE
Advance ripening	20%	23%
Wine Quality	43%	35%
Pest/disease control	37%	42%
How is LR applied:		
1 side only	47%	39%
2 sides	53%	61%
Timing of LR:		
Bloom	6%	14%
Fruit set	65%	61%
Veraison	29%	25%

Impacts of leaf removal timing and severity on Syrah

Treatments

- No defoliation
- 4 Leaf pre-bloom
- 6 Leaf pre-bloom
- Fruit set leaf removal

Vineyard Measurements

- Temperature/humidity
- Light penetration to the fruiting zone
- Vigor assessments
- Return fruitfulness/winter hardiness
- Yield components

Basic Winemaking - Stopped after secondary fermentation, no oak or adjustments

Chemistry - Phenolics, fruit composition

Sensory - Judges selected from the industry winemakers

50% leaf removal at fruit set

No leaf removal (Control)

Prebloom Leaf removal reduces yield by reducing berries per cluster and cluster weight

Treatment	Year	Clusters per Vine	Cluster Weight (g)	Berries Per Cluster	Berry Weight (g)	Yield (kg/vine)	Yield (Tonnes/Acre)
No Defoliation	2012	23.7 a	218.9 с	124.5 b	1.92 a	3.62 b	5.73 b
4 leaf PB	2012	24.0 a	186.3 ab	122.1 ab	1.77 a	3.52 b	5.52 b
6 leaf PB	2012	22.6 a	170.4 a	108.5 a	1.74 a	2.90 a	4.40 a
Fruit Set	2012	23.9 a	207.7 bc	115.4 ab	1.87 a	3.79 b	5.55 b
No Defoliation	2013	20.5 a	144.7 b	170.8 b	1.28 b	2.86 c	4.38 c
4 leaf PB	2013	19.4 a	111.7 a	95.5 a	1.14 ab	2.38 b	3.47 b
6 leaf PB	2013	19.9 a	86.0 a	87.0 a	0.93 a	1.92 a	2.76 a
Fruit Set	2013	18.8 a	131.1 b	146.5 b	1.29 b	2.79 c	3.96 c

% Decrease

6 leaf PB

2012	33%	13%	9%	20%	23%
2013	40%	49%	27%	33%	37%

Shiraz Berry Phenolics

Syrah Skin Anthocyanin Content

Syrah Wine Phenolics

A twofold increase in condensed tannins with the 6 leaf removal pre-bloom

Syrah Skin Quercetin

Quercetin-3-galactoside

он о он он он он

Quercetin-3-glucoside

Quercetin-3-glucuronide

Quercetin Content

2013 Shiraz Wine Sensory Attributes

2015 Shiraz Wine Sensory Attributes

- Fruit set 50% (N side
- ▲ Fruit set 100%
- Veraison 50% (N sid
- Veraison 100%
- 6 Leaf pre-bloom

Flavour Aroma

2014 Riesling Sensory

2015 Riesling Sensory

Timing of Leaf Removal

Pre bloom (physical and chemical changes)

- Reduces Yield lighter and looser clusters, smaller berries
 - Increases sugar, phenolics, colour
- Increased quercetin stabilizes wine color
- Lower seed mass and number

Fruit set (mainly chemical changes)

- Advanced ripening
- ? Acclimatize to sun exposure sunburn
- Quercitin levels increase up to 10x polymeric pigment stability
- Tannin precursors decreased
- ? Reduce bunch rot and powdery mildew
- Reduce malate, TA and K⁺
- Reduced IBMP
- Increases aromatics (free and bound) e.g. terpenes

Veraison (chemical but Less known)

- Very little known reduce veggie aroma and change aroma profile
- ? Risk sunburn

PARC Wine Grape Research Team

Tom Lowery **Carl Bogdanoff** Entomology **Plant Physiology**

Dan O'Gorman Plant Pathology **Pat Bowen Plant Physiology**

José Úrbez Torres **Plant Pathology**

Joan Cossentine **Scott Smith**

Tom Forge Pest Pathology Soil Resources Nematology

Margaret Cliff **Sensory Analysis**

Kevin Usher-**Phytochemistry**

Agiculture et Agroalimentaires Canada

Acknowledgements

- BC Wine Grape Council & AAFC
- Collaborating wineries and vineyards
- David Gregory, John Drover, Tom Kopp

3. Light management – Effects of Row Direction and Cluster Exposure in Merlot

Goals of Canopy Management

- 1. Advance maturity
- 2. Produce high quality fruit

What is the optimum light exposure pattern to achieve the highest quality: mature and desirable?

Row direction affects the timing of cluster and canopy exposure – does it affect maturation and quality?

ROW DIRECTION X CLUSTER EXPOSURE

We can't do this with our resources!

Gain some insights by comparing treatment effects in blocks with contrasting row directions.

Light Management = Canopy Management

Goals:

- produce mature, high-quality fruit
- reduce/eliminate sunburn
- Fruit quality is affected by sun exposure
- Are effects consistent by row direction?

Compare exposure effects in contrasting row directions

Bull Pine Vineyard, Constellation

Cluster Exposure Experiments

Variety – Merlot 346 on Riparia Gloire

2 experiments - contrasting row directions

Treatments:

- shaded clusters, each side of vines
- exposed clusters, each side of vines

via shoot, cluster and leaf positioning

Wines – 3 treatments:

- exposed, each side of vines
- shaded

Fisheye Image

Summer

Fall

IR Sensor

IR Image

Mid-August Temperatures

Mid-September Temperatures

Yield, Pruning Mass and Fruit Maturnation

Afternoon sun

Air

27°

afternoon morning

Yield: 3.7 Kg/vine

Pruning mass: 430 g

September 10: 20.5 Brix

October 19: 25.3 Brix

Yield: 3.5 Kg/vine

Pruning mass: 450 g

September 10: 20.2 Brix

October 5: 25.5 Brix

Wine Quality

Afternoon:

- Lowest phenolics
- Lowest anthocyar in Highest phenolics
- Least body

Morning:

- Most body
- Highest anthocyanin
- Highest colour
- Least vegetative
- Lowest must TA
- Most fruity

Shaded:

- Most vegetative
- Lowest colour
- Least fruity

Afternoon:

- Lowest phenolics
- Lowest anthocyanin
- Least vegetative
- Lowest must TA
- Low colour

Morning:

- Most body
- Highest phenolics
- Highest anthocyani
- Highest colour

Shaded:

- More vegetative
- Low colour
- Least body

King Family Farm