Acidifications and Deacidifications
Common practices in winemaking

Acidifications in winemaking

• Addition of acid means generally to increase the titratable acidity (TA) and/ or decrease the pH
• Frequently used in grape juices and/ or wines from warmer climates, lower latitudes, extreme warm years, lower acid varieties
• To improve the chemical health and taste balance
Acidulants

• Chemicals used in the food industry which increase the acid and/or decrease the pH are called “ACIDULANTS”

• They increase the acid sensation or give a prickly or tart taste

• a) **Organic Acidulants:** acetic, citric, fumaric, lactic, malic, tartaric acid

• b) **Inorganic Acidulants:** phosphoric acid
Acidulants in winemaking
(in alphabetical order, not in order of importance)

Calcium Sulphate (CaSO$_4$) 136.4 g/mol

- Used in the production of sherry in Spain
- Legal in Canada to lower the pH in wine without increasing the titratable acid (TA)
- $\text{CaSO}_4 + \text{H}_2\text{T} \rightarrow \text{CaT} + \text{SO}_4^{2-} + 2\text{H}^+$
- The CaT precipitates, allowing a further ionization of these protons. **Lowers the pH**
- Overall $\text{pH} \downarrow$, TA \rightarrow
Acidulants in winemaking (cont’d)

Citric Acid ($C_6H_8O_7$) 192.14 g/mol

\[\text{COOH-CH}_2\text{-COH-COOH-CH}_2\text{-COOH} \]

- Never added before fermentation
- Lactic acid bacteria can metabolize this to diacetyl and/or acetic acid
- Used in sparkling wines to prevent haze (casse)
- In Canada, GMP (Good Manufacturing Practices)
Fumaric Acid ($C_4H_4O_4$) 116.07 g/mol

COOH-CH= CH-COOH

- Inhibitor of MLC bacteria at > 500 mg/L
- In Canada, GMP
- In the United States, 2.4 g/L
Acidulants in winemaking (cont’d)

Lactic Acid \((\text{C}_3\text{H}_6\text{O}_3)\) 90.08 g/mol

\[\text{CH}_3-^{*}\text{CHOH-COOH}\]

- Used to mildly increase acid taste
- GMP in Canada
Acidulants in winemaking (cont’d)

Malic Acid (C₄H₆O₅) 134.09 g/mol

COOH-CH₂-\(^*\)CHOH-COOH

- Added as a D/L racemic mixture
- Won’t precipitate like Tartaric acid (i.e. as potassium bitartrate)
- GMP in Canada
Acidulants in winemaking (cont’d)

Tartaric Acid ($\text{C}_4\text{H}_6\text{O}_6$) 150.09 g/mol

$\text{COOH-}*\text{CHOH-}*\text{CHOH-COOH}$

- The most common acid in winemaking
- Dissociates as follows:

$$
H_2T \rightarrow HT^- + H^+ \rightarrow T^-^2 + H^+
$$
Acids in winemaking

<table>
<thead>
<tr>
<th>Acid</th>
<th>Molecular Weight</th>
<th>K_d (First)</th>
<th>K_d (Second)</th>
<th>pK_a (First)</th>
<th>pK_a (Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tartaric acid</td>
<td>150.1</td>
<td>9.10×10^{-4}</td>
<td>4.25×10^{-5}</td>
<td>3.04</td>
<td>4.34</td>
</tr>
<tr>
<td>Malic acid</td>
<td>134.1</td>
<td>3.50×10^{-4}</td>
<td>7.90×10^{-6}</td>
<td>3.46</td>
<td>5.1</td>
</tr>
<tr>
<td>Citric acid</td>
<td>192.1</td>
<td>7.40×10^{-4}</td>
<td>1.74×10^{-5}</td>
<td>3.13</td>
<td>4.74</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>118.1</td>
<td>6.16×10^{-5}</td>
<td>2.29×10^{-6}</td>
<td>4.21</td>
<td>5.64</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>90.1</td>
<td>1.40×10^{-4}</td>
<td></td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>Acetic acid</td>
<td>60.1</td>
<td>1.76×10^{-5}</td>
<td></td>
<td>4.75</td>
<td></td>
</tr>
</tbody>
</table>
Deacidifications in wine

- Generally means reduction in titratable acidity (TA)
- Acid reductions are more common in northern climates and/or cooler growing seasons
- Some acid reductions are often done systematically on certain wines (i.e. MLF on reds)
Ameliorations

- Both acidifications and deacidifications are sometimes called “AMELIORATIONS”:
 To make better, improve upon, make more tolerable, amend, enhance, enrich, help meliorate, perfect, refine, upgrade

- However, in the mind of most winemakers, amelioration means use of water (dilution) to improve the wine

- Hence, amelioration has become a euphemism for “water stretching”
Methods of Deacidification

• Amelioration

• Blending

• Fermentation with acid reducing yeasts

• MLF
 • Malo Lactic Fermentation

• Chemical deacidification
 • treating the juice and/or wine with chemicals to precipitate acid
Methods of Deacidification (cont’d)

Amelioration

• Addition of water to juice (stretching)
• Will reduce (dilute) TA, but generally does not reduce the pH due to the buffering capacity of the juice (even if approx. 30% dilution)
• Would also require sugar additions to achieve the desired alcohol concentration
• Is used to produce mainly low alcohol products (i.e. 7% alcohol)
• Is not permitted in most countries for table wines
• Is prohibited for VQA wines (table wines)
• $\text{TA} \downarrow$, $\text{pH} \rightarrow$
Methods of Deacidification (cont’d)

Blending

• In this context, not for flavour, rather for balance
• Blend a low acid/ high pH must or wine with one of high acid/ low pH

• Limited by
 a) Must (juice)/ wine availability
 b) Appellation rules (geographic indicators)
 c) Varietal content rules
 d) Vintage content rules

• TA↑ or↓, pH↑ or↓, depending on the wines blended
Fermentation with acid reducing yeast

- Small amount of Malic acid (10-20%) is degraded by some common wine yeasts (Saccharomyces strains)
- Using Schizosaccharomyces pombe (beer in Swahili), first isolated in 1893 from East African millet beer
 - First great expectations for wine, but then great disappointments
 - Needed a fairly high temperature (i.e. 32-42°C)
 - Hence it is not competitive with Saccharomyces cerevisiae at wine fermentation temperatures (lower)
 - Also produces off-flavours
 - Incompatible for winemaking when used as fermenting yeast
- New products on market now for deacidification (See Kotseridis lecture February 15)
Methods of Deacidification (cont’d)

Malolactic Fermentation

- Reduces Malic acid only – converts it into Lactic acid
- Commonly used on all red wine from virtually all climates
- For a few white wines (e.g. chardonnay)

\[C_4H_6O_5 \xrightarrow{\text{bacteria}} C_3H_6O_3 + CO_2 \]

(Malic acid - Diacid) (Lactic acid - Mono acid)

- Reduces acidity by 1-3 g/L and changes taste
- Overall:
 - TA↓, pH↑
Methods of Deacidification (cont’d)

Chemical Deacidifications- Chemical treatments

a) using a weekly basic anion resin exchange

• This involves weakly bound hydroxyl groups (OH\(^-\)) onto the exchange resin which are then exchanged for acid anions present in the wine

• The OH\(^-\) from the resin binds with the H\(^+\) proton from the wine acids to form water (H\(_2\)O) (OH\(^-\)+H\(^+\)→H\(_2\)O)

• The acid anions from the juice/wine (i.e. sulphite, amino acids, malate, etc.) attach to the resin and stay on it. This reduces the acidity

• Overall, this process is very detrimental to quality
 • TA↓, pH↑
Methods of Deacidification (cont’d)

Chemical Deacidifications- Chemical treatments

b) Potassium Tartrate \((K_2C_6H_4O_6)\)
\[K_2T \text{ 226.27 g/mol} \]

- \(K_2T + H_2T \) (Tartaric acid) \(\rightarrow\) 2KHT

\[
\frac{226.27 \text{ g/mol} \ (K_2T)}{150.09 \text{ g/mol} \ (H_2T)} = 1.5076 \sim 1.51
\]

- Hence it needs 1.51 g of Pot. Titrate to remove 1.0g of Tartaric acid. The reason being because the other gram comes from the added \(K_2T\)

- \(K_2T\) is expensive and not very effective
- Not registered in Canada
- \(TA\downarrow, \ pH\uparrow\)
- GMP
Methods of Deacidification (cont’d)

Chemical Deacidifications - Chemical treatments

c) Carbonate Deacidifications

- Under the present and amended Canadian Food and Drug Regulations (CRC, C870, 2011-11-24)
- **Calcium Carbonate**: CaCO_3, 100.09 g/mol
 - “Simple salt” for minor deacidification
 - “Double salt” for major deacidification

- **Potassium Bicarbonate**: KHCO_3, 100.12 g/mol
 - For minor deacidification

- **Potassium Carbonate** K_2CO_3, 138.21 g/mol
 - For minor deacidification
The chemistry involved

• Basic carbonate reactions with acids give water (H$_2$O) + Carbon Dioxide (CO$_2$)

\[\text{i.e. } \text{CO}_3^{2-} + \text{H}^+ \rightarrow \text{HCO}_3^- + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}_2\text{O} + \text{CO}_2 \]
General usage in winemaking

- Calcium Carbonate (CaCO_3) has been used in winemaking for almost one hundred years

- The two Potassium Carbonates (KHCO_3, K_2CO_3) have been permitted for use more recently in Europe and Canada

- Sodium Carbonates are not permitted
 - NaHCO_3 (baking soda)
 - N_2CO_3 (washing soda)

(P.S. On the other hand, other sodium based chemicals such as in cation exchange or $\text{Na}_2\text{S}_2\text{O}_5$ sodium metabisulphite are permitted)
• All “Simple” Carbonate additions- Deacidifications remove Tartaric acid only

• The double salt CaCO₃ Deacidification involves both main grape acids (i.e. Tartaric acid plus Malic acid)

• All major acid adjustments (acidifications and deacidifications) are ideally performed on grape juice

• Minor adjustments are often delayed until after fermentation into the wine stage
Acids involved in Deacidification

<table>
<thead>
<tr>
<th>Tartaric Acid</th>
<th>Malic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₄H₆O₆ 150.09 g/mol</td>
<td>C₄H₆O₅ 134.09 g/mol</td>
</tr>
<tr>
<td>Several isomers</td>
<td>Two isomers</td>
</tr>
<tr>
<td>Only the L(+) isomer is found in grapes</td>
<td>Only the L(−) isomer is found in grapes</td>
</tr>
</tbody>
</table>

![Tartaric Acid Structure](image1)

![Malic Acid Structure](image2)
Tartaric acid and Malic acid

- Both acids have two dissociation constants
- K_d is defined as: $K_d = \frac{[A^-] [H^+]}{[AH]}$

 $[A^-]$ and $[H^+]$ are the equilibrium concentration of the anionic form of the acid and its proton respectively.

 $[AH]$ is the undissociated acid concentration

1. $H_2T \rightarrow HT^- + H^+$
 $K_{d1} = 9.10 \times 10^{-4}$

2. $HT^- \rightarrow T^- + H^+$
 $K_{d2} = 4.25 \times 10^{-5}$
 (greater dissociation)

1. $H_2M \rightarrow HM^- + H^+$
 $K_{d1} = 3.50 \times 10^{-4}$

2. $HM^- \rightarrow M^2 + H^+$
 $K_{d2} = 7.90 \times 10^{-6}$
 (lesser dissociation)
Tartaric and Malic acid (cont’d)

- The greater the dissociation, the stronger the acid since the strength of an acid is a measure of its ability to release H+ ions into solutions
- The pK of a weak acid (pKa) may be defined analogously to pH or pOH
- pKa = -log Kd

<table>
<thead>
<tr>
<th>acid</th>
<th>molecular weight</th>
<th>Kd</th>
<th>pKa First</th>
<th>pKa Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tartaric acid</td>
<td>150.1</td>
<td>9.10x10^-4</td>
<td>4.25x10^-5</td>
<td>3.04</td>
</tr>
<tr>
<td>Malic acid</td>
<td>134.1</td>
<td>3.50x10^-4</td>
<td>7.90x10^-6</td>
<td>3.46</td>
</tr>
<tr>
<td>Citric acid</td>
<td>192.1</td>
<td>7.40x10^-4</td>
<td>1.74x10^-5</td>
<td>3.13</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>118.1</td>
<td>6.16x10^-5</td>
<td>2.29x10^-6</td>
<td>4.21</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>90.1</td>
<td>1.40x10^-4</td>
<td></td>
<td>3.86</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>60.1</td>
<td>1.76x10^-5</td>
<td></td>
<td>4.75</td>
</tr>
</tbody>
</table>
Tartaric and Malic acid (cont’d)

<table>
<thead>
<tr>
<th>Tartaric Acid</th>
<th>Malic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pK_1 = 3.04) (pH)</td>
<td>(pK_1 = 3.46) (pH)</td>
</tr>
<tr>
<td>(pK_2 = 4.34) (pH)</td>
<td>(pK_2 = 5.10) (pH)</td>
</tr>
</tbody>
</table>

The midpoint pH between \(pK_1 \) and \(pK_2 \) is calculated as follows:

Tartaric Acid
\[
\frac{pK_1 + pK_2}{2} \downarrow \\
\frac{3.04 + 4.34}{2} = 3.69
\]

Malic Acid
\[
\frac{pK_1 + pK_2}{2} \downarrow \\
\frac{3.46 + 5.10}{2} = 4.28
\]

Other literature has:
\[
\frac{2.95 + 4.25}{2} = 3.60
\]

Therefore, the midpoint is 3.6 - 3.7
Dissociation of Tartaric Acid

From Zoecklein et al., Wine Analysis and Production, p229
H₂T ⇌ HT⁻ + H⁺ \quad \text{pKa} = 3.04
HT⁻ ⇌ T⁻² + H⁺ \quad \text{pKa} = 4.34

\textbf{pH: 3.67 = maximum concentration of bitartrate ion}
when pH<3.67, KHT ppte. causes equilibrium shift to lower pH
• i.e., decrease HT⁻, shifts to right, produces more H⁺
when pH>3.67, KHT ppte. would increase pH
• i.e., consumes H⁺ to form more HT⁻
• All simple carbonate deacidifications remove Tartaric acid only
• Tartaric acid 150.09 g/mol

\[
\text{HOOC-}^{*}\text{CH(OH)-}^{*}\text{CH(OH)-COOH}
\]

or

\[
\text{CHOH-COOH} \xrightarrow{\text{reactive sites}} \text{CHOH-COO}^{-} \quad +2H^{+}
\]
Simple salt (Direct addition of CaCO\(_3\))

Calcium Carbonate CaCO\(_3\) 100.09 g/mol

- CaCO\(_3\) in acidic environment (ie wine) dissociates
- CaCO\(_3\) → Ca\(^{2+}\) + CO\(_3^{-2}\)

(CO\(_3^{-2}\) + H\(^+\) → HCO\(_3^{-}\) + H\(^+\) → H\(_2\)CO\(_3\) → H\(_2\)O + CO\(_2\))

\[
\begin{align*}
\text{CHOH- COOH} & \quad \text{CHOH- COOH} \\
\quad \quad \text{+CaCO}_3 & \quad \quad \text{CHOHCOO}^- \\
\text{Calcium carbonate} & \quad \text{Calcium Tartrate (CaTart)} \downarrow \\
\rightarrow & \quad \text{H}_2\text{CO}_3 \quad \rightarrow \quad \text{H}_2\text{O} + \text{CO}_2
\end{align*}
\]
Calcium Carbonate (cont’d)

- The reaction is fast initially but not complete since not all Tartaric acid is dissociated instantly
- Leaves unreacted Ca\(^{2+}\) for some time
- Needs about 6 weeks for complete calcium stability in wine
- Better and less problematic for **juice deacidification** since there is enough time to stabilize (fermentation time plus storage time)
- CaTart stabilizes faster at higher temperatures
Calcium Carbonate (cont’d)

Calculations

- Since 1.0 mol of CaCO$_3$ reacts with 1.0 mol of Tartaric acid:

\[
\frac{100.09 \text{ g/mol CaCO}_3}{150.09 \text{ g/mol Tartaric acid}} = 0.6669
\]

i.e. 0.67g of CaCO$_3$ will precipitate 1.00g of Tartaric acid

\[\text{TA} \downarrow, \text{pH} \uparrow\]
Usage of other carboxylates

Potassium Bicarbonate KHCO_3 100.12 g/mol
(Potassium Hydrogen Carbonate, Potassium acid carbonate)

- KHCO_3 in acidic environment (wine) dissociates

$$\rightarrow \text{K}^+ + \text{HCO}_3^-$$

($\text{HCO}_3^- + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}_2\text{O} + \text{CO}_2$)

- Since 1.0 mol of KHCO_3 reacts with 1.0 mol of Tartaric acid

\[\text{K}^+ + \text{CHOH-COOH} \rightarrow \text{CHOH-COOK} \]

\[\text{CHOH-COOH} \quad \text{CHOH-COOH} \]

Tartaric acid Potassium Bitartrate

- 0.67 g of KHCO_3 will precipitate 1.0 g of Tartaric acid

\[\text{TA} \downarrow, \text{pH} \uparrow \]
Usage of other carbonates

Potassium Carbonate K_2CO_3 138.21 g/mol

- Works similar to $KHCO_3$ but with a different stoichiometry
- For $TA \leq 10.5$ g/L
- Since K_2CO_3 has two potassium ions, only a $\frac{1}{2}$ mol of K_2CO_3 is needed to react with one mol of Tartaric acid

\[
\text{i.e. } 0.5 \text{ mols} \times 138.2 \text{ g/mol } K_2CO_3 = \frac{0.5 \times 0.92 \text{g } K_2CO_3}{150.09 \text{g/mol Tartaric}} = \frac{0.46 \text{g } KCO_3}{1.0 \text{g Tartaric}} \rightarrow 0.46 \text{g } K_2CO_3 \text{ is needed to precipitate 1.0g Tartaric acid} \\
TA \downarrow, \text{ pH} \uparrow
\]
Usage of other carbonates

Any addition of KHCO$_3$ (Potassium Bicarbonate) and/or K$_2$CO$_3$ will always reduce TA and increase the pH.

$\text{TA} \downarrow, \ \text{pH} \uparrow$

Verifications:

- Bitartrate (KHT) in grape juice (also inside grape berries) is almost always at the saturation point (Tartaric acid: about 3.0-6.0 g/L, K$^+$: 1.0-2.0 g/L depending on climate, variety and vintage year)
Factors bringing KHTart Precipitation

1. Prolonged storage of juice
2. Chilling of juice (the colder, the more tartrate losses-precipitates and is deposited on tank walls)
3. Formation of alcohol (fermentation) reduces solubility of potassium bitartrate
4. Chilling of wine for cold stabilization
5. Freezing the berries (Icewine making)

When bitartrate precipitates, there are changes in the medium (juice/wine)

• The acidity (TA) is always lowered
• The pH’s behaviour depends on the pH value at which the KHT precipitation occurs.
- The maximum Bitartrate ion concentration HT^- happens to be at the midpoint between pK_1 and pK_2
- i.e. $pH = 3.67$

$$H_2T \xrightarrow{K_{d_1}} HT^- + H^+ \xrightarrow{K_{d_2}} T^{-2} + H^+$$

$$pK_{a_1} (3.04) + pK_{a_2} (4.34) \div 2 = 3.67$$

If KHT precipitation occurs at a lower pH than 3.67 (i.e. $K^+ + HT^- \rightarrow KHT$), then it lowers the pH because when HT^- ppte and is lost, it triggers more H^+ dissociation from H_2T,

$pH \downarrow, TA \downarrow$

$$H_2T \rightarrow HT^- + H^+ \quad pK_{a} = 3.04$$
Consequences

If KHT precipitation occurs at a higher pH than 3.67 (i.e. $K^+ + HT^- \rightarrow KHT$), then it raises the pH because when HT^- is lost when ppte forms, it triggers more H^+ consumption to replenish the HT^-, pH↑, TA↓

- $HT^- ⇌ T^-^2 + H^+$ \(pKa = 4.34 \)

- It is therefore advised to make roughly estimated acid corrections (acidifications or deacidifications) as early as possible at the juice stage to avoid later runaway situations (i.e. controlling the pH in red wine prior to MLF)
Double Salt CaCO₃ Deacidifications

- The only Carbonate deacidification which addresses Malic acid also is the double salt precipitation with calcium carbonate.
- Typical juice/ wine pH’s are anywhere from pH 3.0-3.7 in Ontario climates.
- The Ca⁺² ion will only react with the Tartaric acid and not malic acid to form CaT at this pH range (H₂T + CaCO₃ → CaT + H₂O + CO₃)
- The Ca²⁺ can not bind to Malic acid (pK₁ = 3.66, pK₂ = 5.10) at those pH’s of 3.0-3.7 to form a precipitate.
- pH needs to be raised to at least 4.5 to allow Ca²⁺ to also bind to malic acid anions and make this double salt precipitation happen.
Double Salt CaCO$_3$ Deacidifications (cont’d)

- As we can only use the CaCO$_3$ to raise the pH to make the precipitation happen, only a fraction of the juice/wine can be used, i.e. this fraction is separated and treated with CaCO$_3$, the pH is then raised on this partial volume to between 4.5-6.5 by the CaCO$_3$, depending on the amount of CaCO$_3$ being used.

- At this higher pH, only then does some of the Malate ion react with the Ca$^{2+}$.

- Since Ca$^{2+}$ still reacts with Tartaric acid, some “Double Salt” will be formed i.e. a Ca-Malate-Tartrate precipitate.
Double Salt CaCO$_3$ Deacidifications (cont’d)

- This “Double Salt” was first mentioned in 1891 by Ordonneau and later recognized by Muenz, 1960/61, that this double salt offered an opportunity to precipitate some malic acid besides tartaric acid.

- In 1963, Kielhofer and Wuerdig refined this process and it was modified again in 1988 by Wuerdig.

- Today, this process is recommended only for ≥ TA’s 11.0 g/L.
Limitations

• The Tartaric acid portion of the TA must always be ≥ 50.0%, otherwise the juice/wine ends up with no or marginal Tartaric acid content

• Remember: Tartaric acid is a stronger acid since it is more ionized ($K_d_1 = 9.0 \times 10^{-4}$, $K_d_2 = 4.25 \times 10^{-5}$) than Malic acid ($K_d_1 = 3.5.0 \times 10^{-4}$, $K_d_2 = 7.9 \times 10^{-6}$), which accounts for the overall formation of their respective Calcium Salts

• In reality (based on their percentages present), only between 30-50% of the precipitate formed is due to the CaMalate

• Muntough (1990) showed first Malic acid would have to be twice the Tartaric level to produce a 50:50 ratio of both salts present in the precipitate
• Today, some special high purity CaCO₃ salts are available which are often “doped” with 1.0% Ca Malate Tartrate crystals (as seeds) to facilitate easier crystalization (e.g. Acidex, Exacid, Malacid, Neoantacid, Sihadex)

• Several investigations cited in *Principles and Practices of Winemaking*, (1998) report less Malate removal and the 1:1 removal occurs only when the initial Malic acid was approximately twice the Tartaric acid level (Nagel et al, 1975; Munyon and Nagel 1977; Steele and Kunkee 1978, 1979)

• (P.S. However, this was in the early years and 10 years before Würdig modified the process in 1988)
Some Double Salt Formation

pH 4.5-6.5

\[
\text{COOH-CHOH-CHOH-COOH} + 2\text{CaCO}_3 \rightarrow \text{COOH-CHOH-CHOH-COOH} + 2\text{CO}_2 + 2\text{H}_2\text{O}
\]

\[
\text{C} \quad \text{O} \quad \text{Ca}^{+2} \quad \text{O} \quad \text{C} \\
\text{CHOH} \\
\text{HOHC} \\
\text{C} \quad \text{O} \quad \text{Ca}^{+2} \quad \text{O} \quad \text{C} \\
\text{CHOH} \\
\text{O}
\]

Calcium Malate Tartrate (Double Salt)

i.e. it takes 0.67g CaCO\(_3\) to remove 1.0g of TA
Single Salts

CaTartrate

\[
\text{Ca}^{2+} \quad \left[\begin{array}{c}
\text{O} \\
\text{OH} \\
\text{HO} \\
\text{O}^{-}
\end{array} \right]
\]

CaMalate

\[
\left[\begin{array}{c}
\text{O} \\
\text{OH} \\
\text{HO} \\
\text{O}^{-}
\end{array} \right] \quad \text{Ca}^{2+}
\]
Calcium Carbonate double salt precipitation

- In theory, equal molar quantities of Tartaric and Malic acid are removed - in practice, more Tartaric acid removed
 - More Tartaric vs. Malic in must/wine
 - Calcium Tartrate can precipitate as single salt in addition to being involved in double salt precipitation

- Conditions to get a 1:1 removal of Tartaric: Malic
 - 2:1 ratio of malic: tartaric

- 2 moles of acid react with 2 moles of calcium carbonate, therefore 1:1 molar relationship
 - Mw calcium carbonate: 100g/mol, Mw Tartaric acid: 150 g/mol
 - 100/150=0.67, to reduce TA by 1g/L, need 0.67g/L calcium carbonate
The process
Step 1: Add Calcium Carbonate to Vessel

Step 1 Adding CaCO$_3$
- Determine amount of calcium carbonate needed (calculation or table)
- Add the dry powder to the deacidification vessel (leave enough room for froth that develops!)
- Mix calcium carbonate thoroughly in 2-3 times the quantity of liquid
The process
Step 2: Add Volume of juice/wine to Calcium Carbonate

Step 2 Adding juice/wine

- Add the volume of juice/wine slowly to the vessel that contains the calcium carbonate to allow pH to increase to 4.5-6
- The chemistry will not work if you add the calcium carbonate to the juice/wine. Why?
- Add the juice without interruption onto the blade of the agitator in the vessel
- This should take at least 20 min
- Always stir vigorously to drive out the CO$_2$ that forms from the reaction
The process

Step 3: Separate the precipitated calcium salts

Step 3 Filtration

- The crystal sludge made of calcium-malate-tartrate salts must be carefully separated from the juice/wine
- Filter using course diatomaceous earth or a vacuum or yeast filter or crossflow filter
The process

Step 4: Mix the non-deacidified juice/wine with the deacidified juice/wine

Step 4 Mixing

• Pump the non-deacidified juice/wine to the deacidified juice/wine as soon as possible and mix well
1. The following is required for this process:

- Total volume (litres) juice/wine to be treated = TV (litres)
- Total titratable acidity (g/L) = TA g/L
- Desired acid (g/L) = DA (g/L)
- Part volume (litres) = PV
2. Calculation of the CaCO$_3$ quantity necessary to reduce the TA for the Desired Acid Content (DAC)

\[
\text{CaCO}_3 \text{ g/L} = (\text{TA g/L} - \text{DA g/L}) \times \text{CaCO}_3 \times \text{Total Vol (L)}
\]
3.a) Calculation of the Part Volume (PV) to be deacidified for juices/musts, an empirical correction factor of -2 would be applied for more accuracy

\[PV_{juice} (L) = \frac{TA (g/L) - DA (g/L) \times TV}{TA g/L-2} \]

3.b) Calculation for the Part Volume (PV) to be deacidified for wine, an empirical correction factor of -3 would be applied for more accuracy

\[PV_{wine} (L) = \frac{TA (g/L) - DA (g/L) \times TV (L)}{TA g/L - 3} \]
Example: TA = 15.2 g/L, DA = 8.3 g/L, Vol = 1300L

Calculation without the empirical correction factors for juice/must or wine

(Commonly textbooks do not show the correction factors)

\[PV = \frac{15.2 - 8.3 \times 1300}{15.2} \]

\[= \frac{6.9 \text{ g/L} \times 1300}{15.2 \text{ g/L}} \]

\[= 0.45 \% \times 1300 \text{L} \]

\[= 590 \text{ litres uncorrected} \]

590 litres uncorrected vs 680 litres for juice corrected

or 735 litres for wine corrected
In practice, if the correction factors are not used (as in some textbooks), then there is not enough acid content in the calculated volume so that some of the CaCO$_3$ remains unreacted and when the deacidified juice/wine is recombined with the other volume, the unreacted (residual) CaCO$_3$ (leftover) will react only with the Tartaric acid. (i.e. reducing the tartaric acid even more so)

Results: Less Malic acid is taken out
Calculations for the Process (cont’d)

Recommendations:

1. Liquids (juice/wine) with ≤ 10.5 g/L of TA should only be deacidified with KHCO\(_3\)

2. Only liquids with a TA ≥ 11.0 g/L should be deacidified with a Double Salt CaCO\(_3\) procedure, and even then, it might not be needed if the tartaric acid portion is significantly higher than malic acid, then KHCO\(_3\) or CaCO\(_3\) (single salt) can be used

3. If however the tartaric acid is less than the malic acid (extreme years, 19g/L TA, 12 g/L malic), then tartaric acid should be added before the double salt deacidification to bring up the ratio otherwise all tartaric acid is lost. This is called “The Malitex” process
Icewine Surprises

- Potassium Bitrate is at its saturation point in fresh grape juice as well as inside the berry (juice).
- Freezing of berries (temperature range -8.0° → -14.0°C) KHT (Bitartrate) precipitates in the berry.
 - The colder, the more precipitation, the more loss
- Loss of Tartaric acid, drop in acidity (TA)
- Malic acid is not precipitated (i.e. none is lost in the berries)
- Upon pressing, the concentrated juice retains most of the Malic acid, calcium and nutrients (i.e. at 40.0 Brix (-10°C), volume is halved, the Malic acid is typically doubled (from 2.0 up to 4.0 g/L) and so is the calcium since these are always recovered in the Icewine juice)
Chemical composition of 298 Vidal Icewine juices from the 2003 and 2004 vintages in the Niagara Peninsula

<table>
<thead>
<tr>
<th></th>
<th>Soluble Solids (°Brix)</th>
<th>Yeast Assimilable Amino Acid Nitrogen (mg N/L)</th>
<th>Ammonia Nitrogen (mg N/L)</th>
<th>Total Yeast Assimilable Nitrogen (mg N/L)</th>
<th>pH</th>
<th>Titratable Acidity (g/L tartaric acid)</th>
<th>Malic Acid (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>39.3 ± 1.7</td>
<td>498 ± 105</td>
<td>57 ± 19</td>
<td>555 ± 120</td>
<td>3.38 ± 0.16</td>
<td>10.5 ± 1.5</td>
<td>7.8 ± 1.3</td>
</tr>
<tr>
<td>Low Value</td>
<td>32.0</td>
<td>182</td>
<td>6</td>
<td>188</td>
<td>2.96</td>
<td>7.0</td>
<td>4.9</td>
</tr>
<tr>
<td>High Value</td>
<td>46.1</td>
<td>738</td>
<td>118</td>
<td>846</td>
<td>3.98</td>
<td>14.6</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Inglis, Kaiser, Kontkanen, and Quai, unpublished
Icewine (cont’d)

• Malic acid is usually very dominant in Icewine juices

• If the pH of the berry juice was below pH 3.67 in the berry, then the loss of Tartaric acid, left behind in the berry in the form of KHT, lowers the pH and TA in Icewine juices

• It is sometimes observed that the TA in Icewine juices is **actually lower** than in the original juice before freezing, even though concentration had occurred but because most of the bitartrate had precipitated, the TA was lowered.

• Acid additions rather than deacidifications might be necessary and can be tricky!
Thank You!

Dr. Karl J. Kaiser, BSc, LLD
CCOVI Professional Affiliate
Brock University
CCOVI Lecture Series
January 25, 2012