

Winemaking Techniques to Manage Tannins: A Pinot Noir and Cabernet Sauvignon Case Study

April 3, 2024 Jennifer Kelly

- Cool climate winemaking in Ontario
- Tannins in grape skin and seeds
- What do tannins contribute to wine flavour?
- TanninAlert database
- Data from 2019/2020
 - Winemaking with Pinot noir and Cabernet Sauvignon
- Sensory data from 2019/2020 wines
- Concluding statements

Winemaking in Ontario

- Cool climate
- Challenges with variation from vintage to vintage
- Winemakers and grape growers are constantly adapting
 - Unpredictable and extreme weather events (increased precipitation during ripening and harvest, warmer than normal winters, early spring frost)
 - Ripening capacity can vary
 - Varieties
 - Sites

ol Climate nology & iculture Institute ock University

- Consistency → How can we consistently produce red wines of high quality despite vintage-to-vintage variation?
- Cool climate leader in production
 - Want to appeal to consumers
- Important red wine quality markers→
 Colour, mouthfeel / texture
 - All driven by tannin profile
 - Want the right balance of skin and seed tannin in grapes at harvest
 - Harvest timing is important
 - This is challenging in cool climate due to barriers in reaching optimal ripeness
 - Slow ripening can lead to low accumulation of tannins in grapes (can be considered "under ripe")

Proposed Solutions

- Winemakers may make stylistic considerations and adjustments in their processes
 - Based on varietal, vintage conditions, previous successes, style preference, winery portfolio
- It is common practice to assess other ripeness indicators
 - Brix
 - pH
 - TA

• What about tannin level?

- Measurement on tannin is important for the bigger picture
- Can we help make this consideration part of the toolbelt of winemakers?

What are Tannins? Skin and Seed Tannin

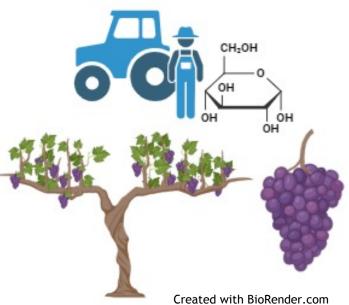
• Skin Tannin

- Composed of monomers

 (catechin, epicatechin and epigallocatechin/gallochatechin) and polymers (procyanidin) (Gouot et al., 2019)
- Mostly responsible for colour stabilization during winemaking and aging when they bind to anthocyanins→ Bind to grape pigments that are found in the skin (Conde et al., 2007)
- They are extracted early, usually within the first two-three days of fermentation (Pappas et al., 2015; Rousserie et al., 2019)
- More desirable for quality

Seed Tannin

- Also composed of monomers and polymers (more monomers than polymers) therefore smaller compounds
 - Higher in flavan-3-ols like: epicatechin, catechin and epicatechin gallate
- Structure of wine as well as contributing to colour stabilization and protection from oxidation (Rousserie et al., 2019)
- Much higher concentration than skin tannins (fresh berry weight) (Casassa, 2017)
- Over-extraction of seed tannin = high levels of rough/drying tannin, low colour, lack of fruit flavour



Factors Influencing Tannin Levels

- Grape maturity→ Increased skin tannin concentration could lead to higher wine tannin
- Higher sugars→(and subsequent higher ethanol levels) lead to increase tannin and colour extraction
- Canopy management
 Bunch exposure, irrigation levels, vine vigour, plant growth regulators (ABA can stimulate the production of skin tannin in grapes when applied exogenously around veraison)

Watrelot, 2020

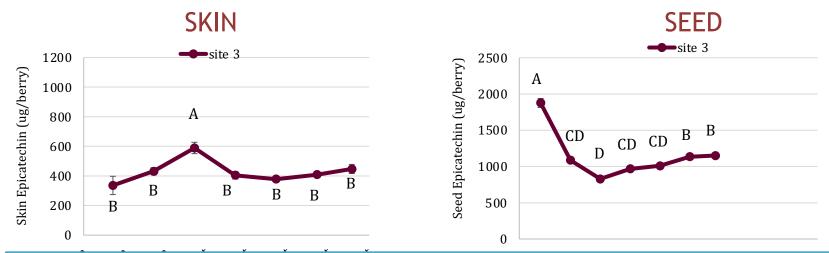
Sensorial Impact of Tannin in Wine

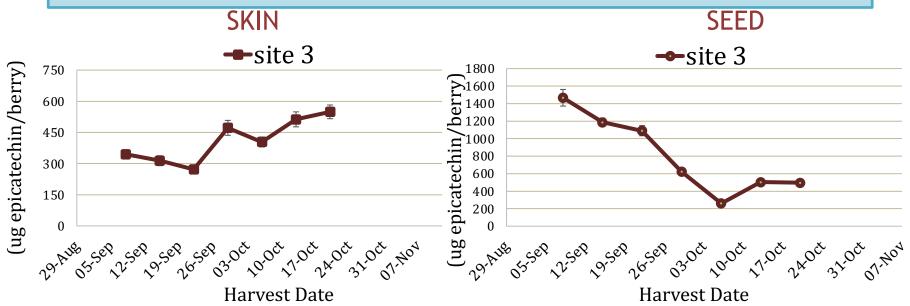
Associated with astringency:

- Drying & puckering oral sensation
 - NOT a taste, this is a mouthfeel or a tactile sensation
- Smaller tannin molecules (seed tannin) = **bitter**
- Larger tannin molecules (skin tannin)
 = astringent
- •Change size via polymerization over time leading to colour changes and reduced astringency

What can TanninAlert do for the Industry?

- The TanninAlert program reports tannin ripeness levels for six red varieties over different sites→ Veraison to harvest
 - Updated in real time during preharvest monitoring
- Assessment of tannin in both skin and seed
- Input information into an Ontario database for winemakers and growers to gather more data to optimize protocols
- Ultimately the goal is to increase Ontario wine quality, increase domestic wine sales and market share


What can TanninAlert do for the industry?


- Examples of what the TanninAlert database has demonstrated over many years of data collection
- Skin and seed tannin accumulation during ripening up to harvest
- Differences amongst varieties
- Differences amongst vintages
- Differences amongst sites

Tannin Development: Up to harvest Cabernet Sauvignon, 2019/2020 (Vintage variation)

Expecting extractable skin tannin to increase over time and extractable seed tannin to decrease over time

Tannin Differences: Site Importance of annual data collection

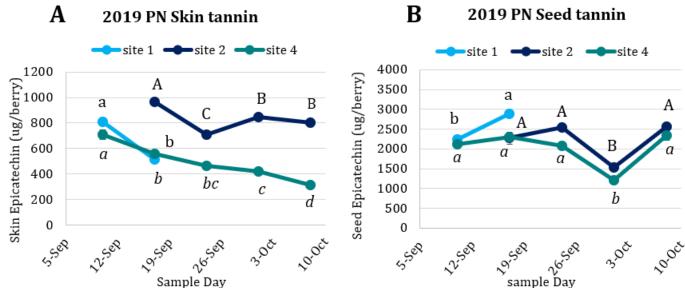
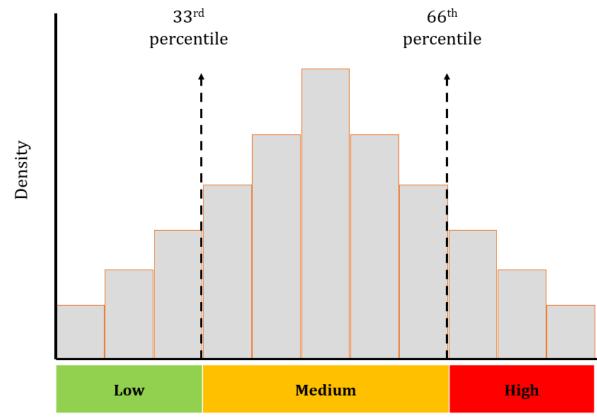



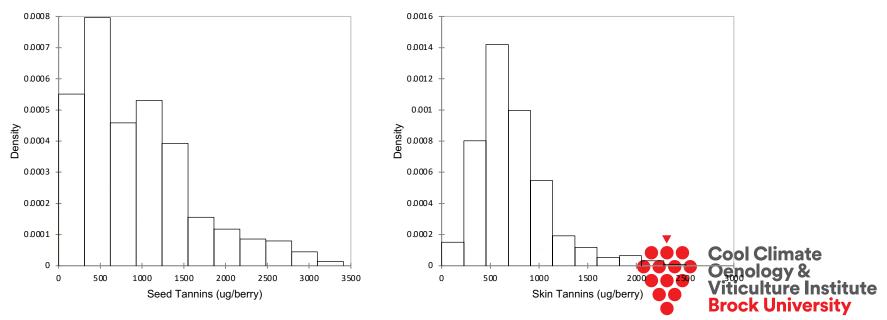
Figure 2.7: Extractable skin and seed tannin concentration (µg/berry) in Pinot noir during the 2019 growing season in 4 vineyards across the Niagara Region. Sites 1 (Four Mile Creek), 2 (Niagara Lakeshore), and 4 (Lincoln Lakeshore). Skin tannin is plotted in figure A and seed tannin in figure B. Different lower-case letters represent significant differences (Student ttest p

Tannin Distribution: Histogram

 μg epicatechin equivalent/ berry

How would a winemaker compare their skin and seed data to the database? The tannin levels are categorized as low, medium, or high based on the 33rd and 66th percentile of the distribution

Benchmarking Varieties: Utilizing the Database



Skin and Seed Tannin Ranges for all samples at Harvest 2015-2022 from Excel File Capturing the full scale of range for the Niagara Region→ Will continue to grow

	Skin tannin range			Seed tannin range		
	(µg epicatechin/berry)			(µg epicatechin/berry)		
Variety	low	medium	high	low	medium	high
All	40.4-	536.2-	796.0-	12.1-534.4	534.4-	1127.2-
Varieties	526.3	796.0	2485.6		1127.2	3381.9

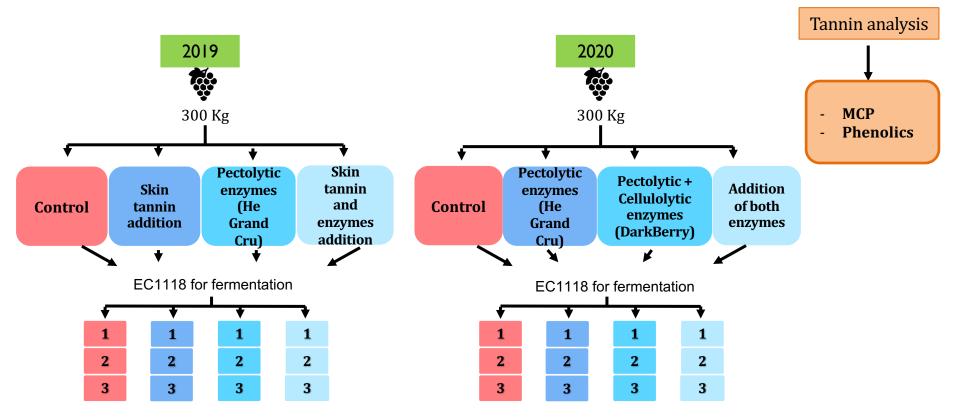
Histogram (Seed Tannins (ug/berry))

Histogram (Skin Tannins (ug/berry))

Project: Low Tannin vs High Tannin Varieties

- This project studied the impact of winemaking techniques on low and high tannin cultivars
 - Selection of Pinot noir and Cabernet Sauvignon to represent both ends of the tannin spectrum
- Do the treatments of exogenous tannin addition, pre fermentation pressing, saignée and enzyme addition impact the final tannin concentration of these varieties?
 - Are high and low tannin cultivars impacted differently?
- Are there perceptible difference in the treatments?
- When compared to the chemical data, do we see an impact?

<u>Pinot noir Profile</u>


- Seeds: 80% of the total polyphenols in the grapes in Pinot noir; 15-20% from skins (Rousserie et al., 2020)
- Can lead to wines that are higher in astringency
- Potential for overextraction of the seed tannins to extract as much skin tannins and colour as possible during fermentation

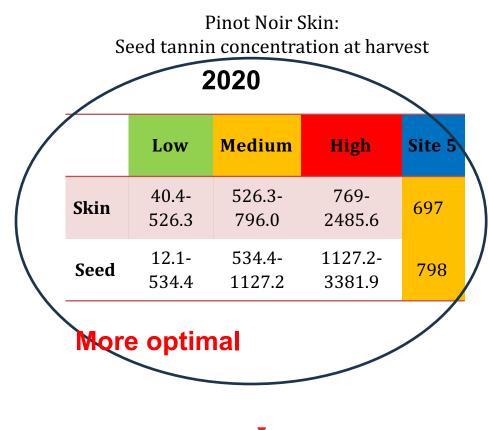
<u>Cabernet Sauvignon</u> <u>Profile</u>

- Seeds: 95% of total polyphenols in grapes from Cabernet sauvignon; only 5% from skins (Mattivi et al., 2009)
- In a cool climate, Cabernet sauvignon grapes are often harvested when not fully ripened, which leads to a low skin tannin and pigment accumulation (Salamone et al., 2019).

Pinot noir: Winemaking Experimental Design

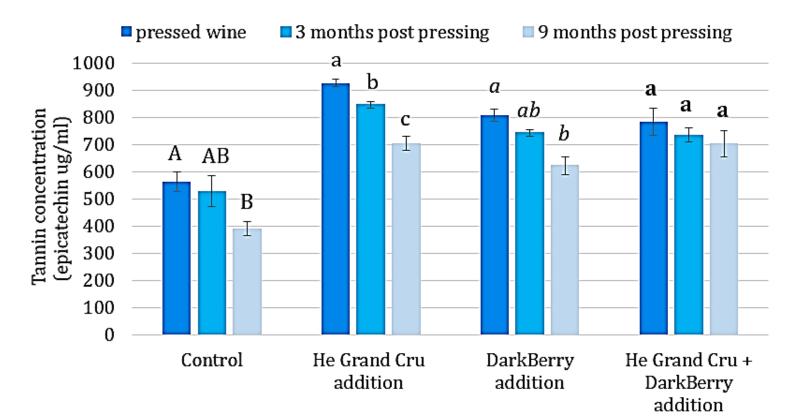
Pinot Noir: Skin and seed values 2019 / 2020, site 5

Cool Climate


Oenology & Viticulture Institute

Brock University

Pinot Noir: Skin and seed tannin concentrations at harvest


2019

	Low	Medium	High	Site 5
Skin	40.4- 526.3	526.3- 796.0	769- 2485.6	562
Seed	12.1- 534.4	534.4- 1127.2	1127.2- 3381.9	3124

Pinot Noir: 2020 Tannin retention over time

Tannin retention also better with enzyme addition versus the control

Addition of enzymes increased the concentration of extractable tannins

Cool Climate Oenology & Viticulture Institute Brock University

Design of Difference Test

- Sensory tests were conducted in August, 2023
- Participants were recruited from Brock University
- "Everything was compared to everything"
- Participants received 6 triads and were asked to determine which wine was different
- Aroma and taste were assessed and the question was: "which wine is different?"

- Pinot noir: Week 1, 31 participants
- Cabernet Sauvignon: Week 2, 32 participants

Results of Difference Test: Pinot noir

Triad	Treatment	Correct	Incorrect	Total
1	Control T1: He Grand Cru Addition	19	12	31
2	T2: Darkberry Addition T3: He Grand Cru + Darkberry	20	11	31
3	Control T2: Darkberry Addition	22	9	31
4	Control T3: He Grand Cru + Darkberry	25	6	31
5	T3: He Grand Cru + Darkberry T1: He Grand Cru Addition	13	18	31
6	T1: He Grand Cru Addition T2: Darkberry Addition	14	17	31

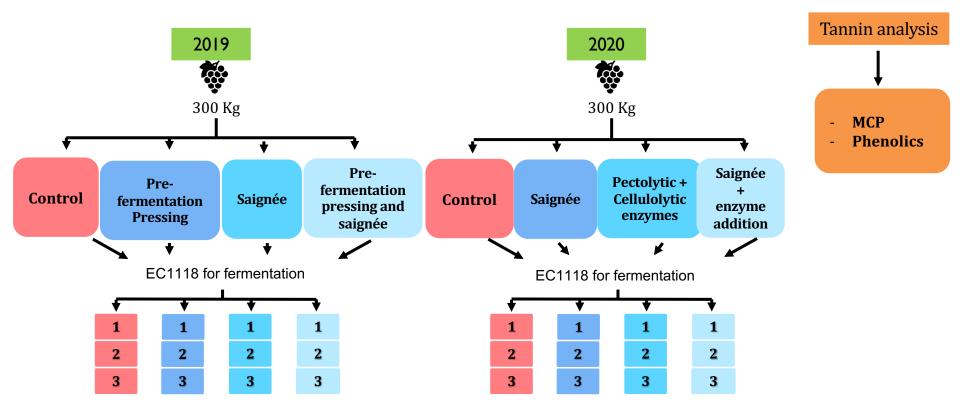
Critical values from Kemp et al., (2009) At 5%=16, 1%=18, 0.1%=20

Pinot noir: Some Comment Data

Open ended opportunity for participants to include some descriptors around the wines. Those that were "tannin-related" have been sorted and wines that were described with those words were quantified

Words	Control	T1: He Grand Cru Addition	T2: Darkberry	T3: He Grand Cru+ Darkberry
Drier, grippy, tannic, tannin, bitterness, mouthfeel, astringency, bitter	13	13	7	12

Sensorial Take Aways



ck Universitv

- Pinot noir:
 - Panelists were correct more often (compared to Cabernet Sauvignon trial)
 - Differences between wines
 - Most pronounced when treatments are compared to control
 - Also T2: Darkberry Addition to T3: He Grand Cru + Darkberry
 - Panelists were not able to discern between T3 (He Grand Cru + Darkberry) and T1 (He Grand Cru) as well as T1 (He Grand Cru) and T2 (Darkberry)
 - Aligned with extractable tannin data
 - Hypothesis: Low tannin variety may be more susceptible to levels of extractable tannin

Cabernet Sauvignon: Winemaking Experimental Design

Cabernet sauvignon: Skin and seed values 2019 / 2020, site 1

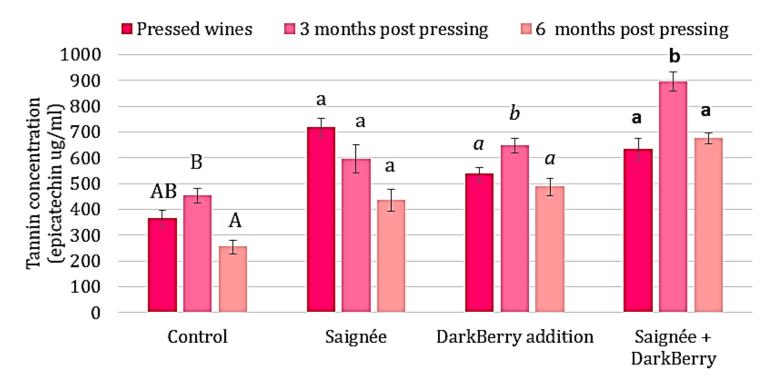
Skin and seed tannin concentrations of Cabernet sauvignon at harvest, site 1

2019

	Low	Medium	High	Site 1
Skin	40-512	513-734	735-1900	668
Seed	41-580	581-1126	1127-2025	1184

Skin and seed tannin concentrations of Cabernet sauvignon at harvest, site 1

2020


	Low	Medium	High	Site 1
Skin	40-512	513-734	735-1900	659
Seed	41-580	581-1126	1127- 2025	1165

Cabernet sauvignon: Tannin retention over time

Tannin retention better with saignée and enzyme

The combination of saignée and DarkBerry enzyme had higher extractable tannins (p<0.05)

Results of Difference Test: Cabernet sauvignon

Triad	Treatment	Correct	Incorrect	Total
1	Control T1: Saignee	10	22	32
2	T2: Darkberry Addition T3: Saignee + Darkberry	16	16	32
3	Control T2: Darkberry Addition	19	12	32
4	Control T3: Saignee + Darkberry	16	16	32
5	T3: Saignee + Darkberry T1: Saignee	4	28	32
6	T1: Saignee T2: Darkberry Addition	2	30	32

Critical values from Kemp et al., (2009) At 5%=16, 1%=18, 0.1%=20

Some Comment Data

Open ended opportunity for participants to include some descriptors around the wines. Those that were "tannin-related" have been sorted and wines that were described with those words were quantified

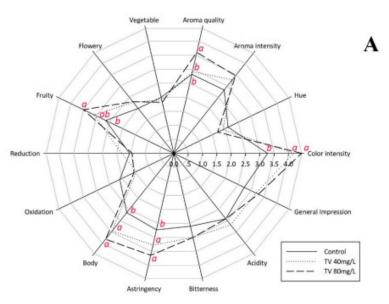
Words	Control	T1: Saignee	T2: Darkberry	T3: Saignee + Darkberry
More tannin, much bitter, bitterness levels, astringency, mouthfeel, sharp, bitter, drying, prickly, chewy	12	16	22	15

Sensorial Take Aways

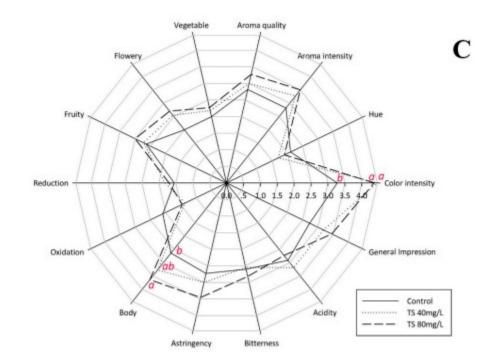
Cabernet Sauvignon

- Panelists were correct less often when compared to Pinot noir • data
- Panelists were unable to detect differences in the Saignée • method from the control unless there were enzyme added
 - Aligned with extractable tannin data
- The results from the Darkberry addition + Saignée and Darkberry addition were evenly split amongst panelists
- Same for Control and T3: Saignée + Darkberry •
 - Still considered significantly different, but more difficult for panelists to identify differences
- More words associated with tannin when compared to PN data
- These results indicate that the higher tannin varieties may be & • less perceptibly impacted by the addition of enzyme, asotheniversity agentral winds are already high in paragetible tappin

Other Sensory Findings


• Li et al., 2020

- Favourable hedonistic assessment of wine with tannin addition
 - Considerations: appearance; aroma and bouquet; taste and texture; after taste; overall impression
 - This was dependent on the mixture of added tannins
 - These authors report highest rated preference sensory results with tannin mixture of 1:1 ratio of hydrolysable and condensed tannin



Cool Climate Oenology & Viticulture Institute Brock University

Vegetable Aroma quality B Flowery Aroma intensity Fruity Hue Color intensity Reduction 10 1.5 2.0 2.5 3.6 3.5 4.6 Oxidation General Impression Control Body Acidity ----- RE 40mg/L --- RE 80mg/L Astringency Bitterness

The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine Chen et al., 2016

Tannin Management in Winery (Smith et al., 2015)

- Enzyme additionExtended maceration
- Increase the amount of tannin in finished wine
- Cold soaking crushed must (not consistent across grape varieties)
- Cap management (submerged cap extracts more tannins than punchdowns)
- Temperature regime during fermentation (increase in temp = increased total tannin extraction)
- Flash détente increased tannin, but were not stable after pressing (cap management important)
- Oxygen management during fermentation
- Saignée or juice runoff can increase tannin
- Yeast selection can influence final tannin

Future Directions

- Continuing to grow the TanninAlert database will continue to inform the industry
- Further sensory evaluation, based on preliminary information could lead to better understanding the impact of treatments on the wines
 - Descriptive analysis to compare full profiles
 - Consumer preferences to understand full impact of winemaking techniques to manage tannins

Thank You

- Charlene Marcotte, MSc
- Daniel Phillipow, MSc Candidate
- Dr. Belinda Kemp and Dr. Debbie Inglis
- All of the panelists who participated in this project

Excellence

Where Next Happens

Réseau canadien de certification de la vigne

Agriculture and Agri-Food Canada

- Chateau des Charmes
- Andrew Peller Ltd
- Falk Farms
- Lawrie vineyards
- Hughes vineyards
- Creekside winery
- Pondview
- 13th Street Winery
- Schenck Farms
- Huebel Grape Estates
- Koop Farms
- George Vineyards
- Fielding Estates
- Arterra

Thank you! Questions?