Characterizing and developing yeasts for the fermentation industry

George van der Merwe

Molecular and Cellular Biology University of Guelph

Overview of yeast & fermentation

Central yeast components in fermentation

Fermentation-related stresses

Coping with stress

Environmental/metabolism-related stresses Sensing mechanisms Hyperosmotic stress Temperature (Desiccation) ۲ **Adaptive response** ို Inhibitory compounds Chaperone рΗ production Neutralizing **Extrusion of toxic** reactions compounds Cell wall & cell Protectant Nutrient starvation membrane biosynthesis remodeling

Overarching goal

Developing new strategies for fermentation industry

Domestication

Gallone et al. (2016) Cell 1661397-1410.e16DOI: (10.1016/j.cell.2016.08.020)

Gallone et al. (2018) Current Opinion in Biotechnology 49:148-155

Harnessing stress tolerance to develop novel yeasts

Environmental/metabolism-related stresses

- Domestication and fermentation temperature
 - Can we identify & characterize yeast strains with temperature-dependent traits that could diversify production or quality?
 - How does changes in temperature impact yeast performance?
 - Can omics approaches unravel these specific traits?

Kveik: Traditional Norwegian Farmhouse Ale yeasts

Genetic relationships of kveik to domesticated yeasts

Richard Preiss

Caroline Tyrawa Kristoffer Krogerus

erus Lars Garshol

Preiss et al. (2018) Front Microbiol. 9:2137. doi: 10.3389/fmicb.2018.02137. eCollection.

TABLE 2 | Estimated ploidy, spore viability, mean sequencing coverage alongS. cerevisiae S288c reference genome, and number of heterozygous singlenucleotide polymorphisms (SNPs) in the six sequenced kveik strains.

Strain	Estimated ploidy	Spore viability (%)	Sequencing coverage (x)	Heterozygous SNPs
Granvin 1	3.93 (±0.30)	56.5	946	65835
Hornindal 1	3.82 (±0.29)	59.0	1221	67910
Hornindal 2	4.10 (±0.23)	53.3	974	61402
Laerdal 2	4.03 (±0.22)	40.6	472	59090
Stordal Ebbegarden 1	3.92 (±0.23)	5.9	671	54344
Voss 1	3.88 (±0.26)	63.4	1198	64959

Shared domestication traits

TABLE 5 | Loss-of-function single nucleotide polymorphisms in PAD1 and FDC1 in the six sequenced kveik strains.

Strain	PAD1	FDC1			
	305G>A	232A>T	460C>T	501insA	
	Trp102*	Lys78*	GIn154*	Trp168fs	
Granvin 1	0/0/0/1		0/0/0/1	1/1/1/1	
Hornindal 1	1/1/1/1		1/1/1/1	1/1/1/1	
Hornindal 2	1/1/1/1		1/1/1/1	1/1/1/1	
Laerdal 2	0/1/1/1		0/0/0/1	1/1/1/1	
Stordal Ebbegarden 1	0/0/0/1	0/1/1/1	0/0/0/1	0/0/0/1	
Voss 1	1/1/1/1		1/1/1/1	1/1/1/1	

*, premature stop codon; ins, insertion; fs, frameshift.

MALTOTRIOSE UTILIZATION

Strain	MAL1x	MAL3x	IMA2	МРНЗ
Granvin 1	2	14	5	4
Hornindal 1	5	14	5	4
Hornindal 2	6	14	6	4
Laerdal 2	4	11	6	4
Stordal Ebbegarden 1	5	11	6	4
Voss 1	2	17	7	4

Preiss et al. (2018)

Increased fermentation rate & flavour diversity

Wort fermentation at 30°C

	Ethyl Acetate	Ethyl Caproate	Ethyl Caprylate	Ethyl Decanoate	Ethyl Nonanoate
Granvin 1	1.715	0.156	2.512	0.494	0.161
Granvin 2	3.118	0.366	4.555	0.455	0.197
Granvin 3	1.492	0.122	1.159	0.013	0.143
Granvin 4	1.195	0.059	0.232	0.012	0.025
Granvin 5	2.231	0.116	1.666	0.08	0.149
Granvin 6	3.2	0.365	5.005	0.88	0.238
Granvin 7	1.564	0.128	1.712	0.056	0.155
Granvin 8	1.229	0.056	0.299	0.026	0.028
Granvin 9	1.537	0.085	1.188	0.076	0.109
Hornindal 1	3.408	0.193	3.58	1.39	0.164
Hornindal 2	2.257	0.084	1.271	0.247	0.091
Hornindal 3	2.505	0.236	4.151	1.412	0.155
Joniskelis	1.495	0.117	2.301	1.277	0.151
Laerdal 1	1.838	0.315	4.124	0.891	0.204
Laerdal 2	1.849	0.102	1.8	0.554	0.159
Muri	2.713	0.224	2.005	1.078	0.188
Stordal Ebbegarden 1	2.103	0.083	0.811	0.272	0.053
Stordal Ebbegarden 2	2.542	0.089	0.619	0.341	0.041
Stordal Framgarden 1	2.395	0.168	2.975	0.772	0.158
Stordal Framgarden 2	2.654	0.44	4.112	0.753	0.176
Stranda	2.393	0.168	2.818	1.035	0.157
Sykkylven 1	2.046	0.101	1.306	0.427	0.08
Sykkylven 2	1.668	0.102	1.392	0.675	0.079
Voss 1	2.156	0.209	3.317	0.618	0.145
Voss 2	2.364	0.307	3.059	0.347	0.157
WLP001	2.064	0.192	0.241	0.105	0.196
WLP002	0.735	0.076	0.537	0.047	0.101
WLP029	3.22	0.348	4.142	0.99	0.292
WLP570	5.734	0.806	8.586	1.583	0.424
Threshold (ppm)	30	0.21	0.9	0.2	0.85

¥

Heat & ethanol tolerance

	Heat treatment			Ethan	ol Treat	ment
Strain	40ºC	42ºC	<i>43⁰C</i>	12%	14%	16%
WLP001	0.14	0.13	0.12	0.48	0.34	0.14
WLP570	1.80	0.51	0.39	0.50	0.41	0.37
Horn1	1.76	0.41	0.35	0.48	0.30	0.27
Horn2	1.67	0.33	0.26	0.40	0.32	0.22
Laerdal2	1.21	0.45	0.33	0.47	0.39	0.24
StorEbb1	1.41	0.36	0.29	0.47	0.47	0.34
Granvin1	1.53	0.42	0.35	0.42	0.10	0.10
Voss1	1.84	0.70	0.30	0.56	0.39	0.22

Kveik: Stress tolerant yeast

Richard Preiss

- s Caroline Tyrawa
- Kristoffer Krogerus Lars Garshol

- Genetically distinct farmhouse ale yeasts
 - Sub-population of Beer 1
- Share domestication traits
 - POF negative
 - Multiple copies of maltose metabolic genes
 - Gained flocculation trait
- Temperature tolerant
- How do they perform at a broader fermentation temperature range?
 - Tested six Kveik, three Beer 1 & one Beer 2 strain at 8 temperatures

Barret Foster

Emine Ozsahin

Testing fermentation temperature range of kveiks

Strain	Family
Cali Ale	Beer 1 American
Vermont	Beer 1 British
Kolsch	Beer 1 Belgian/German
St. Lucifer	Beer 2 Belgian
Granvin 1	Kveik
Hornindal 1	Kveik
Hornindal 2	Kveik
Laerdal 2	Kveik
Stordal Ebbegarden 1	Kveik
Voss 1	Kveik

Seed Rate: 10 million cells/ml

Wort: SPA (SG = 1.0425)

Temperatures:	12°C, 15°C	C, 22°C,	30°C,	35°C
37°C, 40°C, 42°	°C			

Timepoints: 6h, 12h, 24h, 48h, 72h, 96h, and 120h

Kveik fermentation at broad temperature range

Foster et al. (2022) Front Microbiol. 13:747546. doi:10.3389/fmicb.2022.747546. eCollection

Sugar consumption at higher temperatures

- Efficient consumption of maltose by kveik
- Control yeasts have strong maltotriose consumption in a defined temperature range
- Variability among kveiks in maltotriose consumption at higher temperatures

Kveik viability at higher temperatures

Increased trehalose production at higher temps

Kveik

Environmental/metabolism-related stresses Sensing mechanisms Adaptive response Chaperone production Neutralizing Extrusion of toxic reactions compounds Cell wall & cell Protectant iosynthesis remodeling

- Trehalose = disaccharide (glucose); cellular protectant
 - Stabilizes membranes; Assist in protein (transporter & enzyme) folding and stability
 - Accumulates intracellularly
 - Induced by stress -
- Kveiks have increased intracellular trehalose
- Deficient in neutral trehalase activity
 - WGS revealed heterozygous SNPs close to catalytic domain in NTH1

Heat treatment & proteomics workflow

Principle Component Analysis

Trehalose enzymes upregulated after temperature shift

Foster et al. (in preparation)

ROS response upregulated after temperature shift

Foster et al. (in preparation)

Kveik & breeding thermotolerant yeast strains

- Hybridization
 - Kveik and Beer 2 strains
 - Kveik x Saison
 - □ Kveik #1 x Saison = NorthSea
 - □ Kveik #2 x Saison = Mjolnir

Bryan Chalk

Hollie Rowlands

Viability of hybrid strains

- Mjolnir has strong thermotolerance
- NorthSea has temperature sensitivity similar to Saison

Rapid attenuation by kveik hybrids

Foster et al. (in preparation)

Carbohydrate consumption

- Kveik maltotriose consumption improves with temperature
- Hybrids most efficient maltotriose metabolism

Acetate & Glycerol production

Foster et al. (in preparation)

Summary

- Several cellular mechanisms at play to convey increased thermal tolerance in kveik yeasts
 - Responses vary among kveik strains
- Kveik-Beer 2 hybrids showed increased temperature tolerance
 - Offer improved fermentation efficiencies compared to parents
 - Produce higher glycerol, but lower acetic acid levels compare to parents
- Not all kveik strains make for suitable breeding partners
 - Some strains more efficient than others

Acknowledgements

Research Team

Richard Preiss Caroline Tyrawa Kristoffer Krogerus Barret Foster

Emine Ozsahin Hollie Rowlands

Collaborators

Carbon metabolism

Wort Sugar	SPA	Upside
Glucose	1.1%	2.1%
Fructose	0.24%	0.27%
Maltose	4.5%	6%
Maltotriose	1.5%	2%
Total Consumable	7.4%	10.3%
Dextrin	2 75%	1 75%
DEXUIII	2.75/0	4.7570