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Appasimento Process

Can be performed under controlled or uncontrolled conditions.

This will affect grape metabolism and the production of

— volatile aroma compounds and other organic molecules including
polyphenols (caftaric acids, flavonoids, resveratrols, anthocyanins and
tannins)

During appasimento process grape dehydration monitored
— by weight to determine berry water loss

— and use destructive measures to determine the relative sugar
concentration.

— Costly, labor intensive and time consuming
— Not always effective

How to develop an effective and reproducible process
— Rapid, accurate and broadly applicable.



Appassimento leads to:
— Sugar concentration (elimination of water)
— Concentration of other substances (elimination of water)

— Increased aromatic, colouring and phenolic substances in
the must (activation of enzymes)

— Transformation of aromatic substances from simple to
complex

— Development of phenolic substances with consequent
disappearance of “rustic grassiness”, and bitterness and
increase of “smooth and rounded” tannins

— Possible effects “desirable Botrytis” or undesirable “grey
mould”:



Appassimento leads to:
— appearance of glycerine
— breakdown of malic and tartaric acid
— Degradation of varietal aromas

— Production of various acids and various colloidal
substances.

— Expression of catalysts that break down or modify
phenolics (flavonoids, catechins, resveratrols,
anthocyanins) or aroma compounds.



Appasimento Project
Metabolite Analyses
(2011-2013) of grapes
dried by different
processes.

— Vine

— Barn

— Greenhouse

— Drying Chamber

—  Kiln

Transcriptomic,
Proteomic and
metabolomic
approaches to find
markers in Italy

Outline

What happens in Ice wine grapes?

Extraction and Identification of 25-30 different
polyphenols

Simple phenols (Gallic acid, Galloyl glucoside,
Caftaric Acid)

Resveratrols (transresveratrol, cis and trans-piceid)

Procyanidins (Procyanidin, Procyanidin Dimers,
Catechin, Epicatechin

Flavonoids (Kaempferol, Kaempferol Glucosides,
Quercetin, Quercetin glucoside, Quercetin
glucuronide, Isorhamnetin glucoside, Myricetin,
Myricetin glucoside, Myricetin galactoside,
Myricetin rhamnoside

Anthocyanins (Delphinidin-3-0-glucoside, Petunidin
3-0O-glucoside, Malvidin-3-O-glucoside, Malvidin 3-
O-acetylglucoside, Malvidin 3-O-
coumaroylglucoside




Contents of Resveratrol and Resveratrol glucoside
(Piceid) during the formation of ice wine grapes

 Accumulation of
resveratrol and piceid
increased throughout
the fall and early
winter period before
the harvest of Ice
wine grapes for
making ice wine.

e Does this involved de
novo synthesis of
resveratrol?
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Transcript levels of Stilbene Synthase
rise in ice wine grapes
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The data suggests that stilbenes are made de novo during the fall and
early winter.

— Grapes are therefore still biologically active

Are grapes grown under appasimento conditions also active in Stilbene
production and is this a good marker for the appasimento process?



Anthocyanin levels do not change during the
development of Ice Wine Grapes
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—Resveratrol —trans-Piceid Viniferin . GreenH
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Resveratrol profile in appassimento during 2011-2013 produced
by different drying methods

Resveratrol normally
found associated to
sugar (glucoside)
named piceid.

Total Resveratrol
includes the addition
of free and bound
forms.

Note that levels were
4 to 8 times larger in
2011 and 2013 than
in 2012.

Excellent marker for
level of fungal
pressure during
growing season.
When total
resveratrol is
compared to control
levels of harvested
grapes, their levels do
not rise significantly
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Zamboni 13 others from Italy and UK Plant Physiol. 2010;154:1439-1459
Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data
Integrationinto Networks

Transcriptome

set of all RNA
molecules, including
MRNA, eRNA, tRNA
and other non-coding
RNA transcribed in
onecell ora
population of cells.

Proteome

entire set proteins
expressed by a
genome, cell, tissue or
organism at a certain
time.

& o

Metabolome

refers to the complete
set of small molecule
chemicals found
wirthin a biological
sample (a cell, tissue,
organism)
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Regulation of transcription
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Conclusions

Potential markers for  Simple and inexpensive
Quality — Single entity
— Transcript/Protein — Dip stick

Markers

e Oxidative stress

e Osmotic Stress e More complicated

* Biotic Stress — Multiple entities

— Small Molecules — More costly and time
e Sugars consuming
e Acids

* Phenolics
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