

"Out of Thin Air"

Spore Trapping and Other Techniques for Studying Grapevine Trunk Disease

Dan O'Gorman: Agriculture and Agri-Food Canada, Summerland Research and Development Centre (SuRDC)

Wine Grapes in British Columbia

Pacific Agriculture Research Centre – Summerland BC

Okanagan Valley, West Kelowna BC

Okanagan Valley, Oliver BC

Fraser Valley, Abbotsford BC

Crown Gall

Caused by the Bacterium Agrobacterium vitis (syn.: Rhizobium vitis)

Powdery Mildew

Caused by the fungus *Erysiphe necator*

Powdery mildew affects fruit causing splitting and rotting

Sour Rot

Caused by a yeast and bacterial complex

Botrytis Bunch Rot

Caused by the fungus Botrytis cinerea

Grapevine Trunk Diseases

Eutypa dieback

<u>Esca</u>

Pathogen Biology and Spore Trapping

Information used to develop disease management recommendations:

- When are fungal spores released in the environment?
- Which environmental conditions favor spore release and infection?
- Determine high risk infection periods throughout the year

Spore traps

 Target chemical and/or biological control product timing and cultural practices

Glass Slide Spore Trap

I-Rod Spore Trap

Burkard Drum Spore Trap

Burkard Cyclone Air Sampler: spore trap

Fire Blight Detection and Disease Prediction

COUGARBLIGHT WSU Fire Blight Flower Infection <u>Risk</u> <u>Assessment Model</u>

Fire Blight Cause: Erwinia amylovora

Detection of Grape Powdery Mildew and Disease Prediction

UC Davis: Grape Mildew Predictive Model

Pathogen: Erysiphe necator

I-Rod spore trap

Model developer and citation. Thomas, C. S., Gubler, W. D., and Leavitt, G. 1994. Field testing of a powdery mildew disease forecast model on grapes in California. Phytopathology 84:1070 (abstr.).

Powdery Mildew: DMI Fungicide Resistance

- Fungal populations resistant to demethylation-inhibiting fungicides (DMIs) is due in part to a single DNA point mutation.
- The target gene encodes the enzyme Cytochrome P-450 demethylase
- DNA point mutation (an A to T transition at codon 136) is presumed to produce a conformational change in the protein active site

Active site / target binding

Cytochrome P-450 demethylase

Image from 2n2u.com

Spore Trapping and qPCR Detection Assay of DMI Resistant Spore

2009 spray schedule and spore trap results

Placement	April	May	May	Мау	May	May	June	June	June	July	July	July	Aug	Aug	Aug	Sept	Sept	Sept	Oct	Oct
Date:	9/09	5/09	9/09	15/09	22/09	28/09	5/09	19/09	26/09	8/09	20/09	24/09	4/09	14/09	21/09	3/09	11/09	18/09	2/09	15/09
DMI Resistant:	Yes	No	No	No	No	Yes	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No

- **Nova** (DMI fungicide)
- Sovran (non-DMI)
- Kumulus DF (wettable sulfur)
- Lime sulfur (dormant)

The length of the coloured lines corresponds to the Time period over which the sprays are effective.

Epidemiological and Diagnostic Studies of Grapevine Trunk Diseases

- Disease etiology and pathogen identification
- Biology of grapevine pathogens
- Epidemiology
- Development of molecular diagnostic and detection tools
- Development and implementation of control strategies

Disease cycle

Spore traps

Disease management and the Weather

California weather - Napa Valley

- When are fungal spores release in the environment?
- Which environmental conditions favor spore release and infection?
- Determine high risk infection periods throughout the year
- Target chemical and/or biological control product timing and cultural practice

Okanagan Valley weather

Spore Trap Locations in the Okanagan Valley

Detection

Quantification

PCR with Species/genus specific primers

5'-ATCGAATTGCATGCGATT-3' 5'-GGTCAATCGAATTGCG-3'

Total genomic DNA extraction

Weekly collection

Botryosphaeriaceae spp. spores detection May-2014

2015 Spore Trap Data Analysed using ddPCR

Osoyoos BC

ddPCR Assay Development: Multiplex (Botryosphaeriaceae & Diatrypaceae)

This is the ddPCR Multiplexed Gradient with the BOT Beta F1+R1 primers (150nM), and DIA5S 16F+89R (50nM) with Parc91 (1/40) and Parc131 (1/20,000)

If you look at the Multiplex, you can see that the lower temperatures are better

Epidemiological and Diagnostic Studies of Grapevine Trunk Diseases

ddPCR

- Botryosphaeriaceae assay looks like it working
- Diatrypaceae assay also working well
- Phaeomoniella assay it looks like it working
- Phaeoacremonium assay it looks like it working

Spore trap sampling

• We have about $1\frac{1}{2}$ years of spore trap samples collected

multiplex

multiplex

• We will continue trapping spores for another 2 years

Agriculture and Agiculture et Agri-Food Canada Agroalimentaire Canada

Thank You

Thanks to the BCWGC for funding in collaboration with AAFC GF2 AIP funds

